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Abstract: Representation learning plays a crucial role in automated fea-
ture selection, particularly in the context of high-dimensional data, where
non-parametric methods often struggle. In this study, we focus on super-
vised learning scenarios where the pertinent information resides within
a lower-dimensional linear subspace of the data, namely the multi-index
model. If this subspace were known, it would greatly enhance prediction,
computation, and interpretation. To address this challenge, we propose a
novel method for joint linear feature learning and non-parametric function
estimation, aimed at more effectively leveraging hidden features for learn-
ing. Our approach employs empirical risk minimisation, augmented with
a penalty on function derivatives, ensuring versatility. Leveraging the or-
thogonality and rotation invariance properties of Hermite polynomials, we
introduce our estimator, named RegFeaL. By using alternative minimi-
sation, we iteratively rotate the data to improve alignment with leading
directions. We establish that the expected risk of our method converges in
high-probability to the minimal risk under minimal assumptions and with
explicit rates. Additionally, we provide empirical results demonstrating the
performance of RegFeaL in various experiments.
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1. Introduction

The increasing availability of high-dimensional data has created a demand for
effective feature selection methods that can handle complex datasets. Repre-
sentation learning, which aims to automate the feature selection process, plays
a crucial role in extracting meaningful information from such data. However,
non-parametric methods often struggle in high-dimensional settings.

A sensible approach is to consider that there are a lower number of unknown
relevant linear features, or linear transformations of the original data, that ex-
plain the relationship between the response and factors. A popular way to model
this is to consider the multi-index model [33], where we assume that the predic-
tion function is the composition of few linear features which form a linear sub-
space (the effective dimension reduction (e.d.r.) subspace) and a non-parametric
function. The multi-index model has been used in practice in many fields, such
as ecology [26] or bio-informatics [1]. If the features were known, learning would
be much easier due to the lower dimensionality of the problem, and their low
number allows for a simpler, more explainable model, as well as a lesser need for
computational and storage resources. Although these relevant features are not
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known a priori, recognising their existence enables the development of methods
that incorporate them, potentially resulting in better estimators for prediction.

Related work A wide range of methods have been proposed to estimate the
e.d.r. space in the context of multi-index models. [8] introduced the method
of moments, initially designed for Gaussian data and an e.d.r. of dimension
one. This method uses specific moments to eliminate the unknown function and
focuses solely on the influence of the e.d.r. space. Extensions of this approach
for distributions with differentiable log-densities have been provided, resulting
in the average derivative estimation (ADE) method [27].

To incorporate subspaces of any dimension, several methods have been pro-
posed. Slicing methods, such as slice inverse regression (SIR) [20], use second-
order moments to account for subspaces. Principal Hessian directions (PHD)
[21] extend the approach to elliptically symmetric data. Combining these tech-
niques, sliced average derivative estimation (SADE) [3] offers a comprehensive
approach. However, these methods heavily rely on assumptions about the dis-
tribution shape and require prior knowledge of the distribution, limiting their
applicability.

Iterative improvements have been suggested for both the one-dimensional
latent subspace case [16] and the general case [11]. Other optimisation-based
methods, such as local averaging, aim to minimise an objective function to
estimate the subspace [13, 34]. Although these procedures exhibit favourable
performance in practice, particularly the MAVE method [34], the theoretical
guarantees provided by [34] show exponential dependency in the dimension of
the original data. Nonetheless, the recent work by [19] has made significant
contributions to sufficient dimension reduction (SDR) by providing robust the-
oretical results for high-dimensional data that do not exhibit exponential depen-
dency. However, their method, designed primarily for dimension reduction and
variable selection in the specific setting of the square loss, relies on the linearity
condition, which holds for example under the assumption that the covariates
follow an elliptically contoured distribution.

In our work, we consider regularising the empirical risk by incorporating
derivatives, a technique employed in various contexts. Classical splines, such
as Sobolev spaces regularisation [31], have used derivative-based regularisa-
tion. More recently, derivative regularisation has been employed in the context
of semi-supervised learning [9], as well as in linear subspace estimation using
SADE [3].

Contributions We propose a novel approach for joint function estimation
and effective dimension reduction space estimation in multi-index models.

We employ the empirical risk minimisation framework, compatible with a
wide range of loss functions, which is regularised by a penalty on the derivatives
of the prediction function. The proposed regularisation enforces dependence
on a reduced set of projected dimensions. Our method addresses the discussed
limitations of previous methods. Indeed the assumptions on the distribution
of the covariates are minimal (typically subgaussianity of the norm), and does
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not require said distribution to be known a priori. We are also able to provide
explicit rates for the high-probability convergence of the expected risk of our
estimator to the minimal risk, again with limited assumptions.

To construct our estimator, which we coin RegFeaL, we exploit the ad-
vantageous properties of Hermite polynomials, which exhibit orthogonality and
rotation invariance. By incorporating alternative minimisation on a variational
formulation of the problem, we enable iterative rotation of the data to better
align with the leading directions, as well as easy computation of the unknown
relevant dimension of the e d.r. space. Furthermore, for the specific case of the
variable selection problem, that is, when only a subset of the coordinates of the
original data is relevant, we can simplify our proposed penalty term which yields
a computationally more efficient algorithm.

While our primary objective is to leverage the existence of a dependency on
only a few variables or features, we also offer principled ways to estimate the
dimension of the feature space and select the relevant features.

We provide detailed explanations about the efficient computation of our es-
timator, ensuring its practical usability. Additionally, we present theoretical
results that establish the high-probability convergence to the minimal risk of
the expected risk of our estimator, with limited assumptions on the loss and
data distribution. This allows for a deeper understanding of the performance of
the method and the dependency on certain parameters such as the dimension
of the original data and the number of samples.

To demonstrate the strengths of our approach, we conduct an extensive set
of experiments focusing on training behaviour, dependency on sample size and
dimension, and comparison to other methods.

Importantly, our regularisation strategy is applicable to a wide range of prob-
lems where empirical risk can be formulated, making it a versatile tool for fea-
ture learning and dimensionality reduction tasks, potentially extending beyond
statistics to fields such as signal processing and control.

In summary, our contributions encompass the introduction of a novel empiri-
cal risk minimisation framework with derivative-based regularisation for predic-
tion and e.d.r. subspace estimation in multi-index models. We provide efficient
computational techniques, theoretical insights, and empirical evidence, high-
lighting the advantages of our proposed method.

Paper organisation The paper is organised as follows: we begin by describing
the problem, our penalties, and the use of Hermite polynomials in Section 2.
Then, we address the question of effectively computing our estimator RegFeaL
in Section 3. In Section 4, we discuss the convergence of the empirical risk of our
estimator. In Section 5, we present numerical studies to illustrate the behaviour
of RegFeaL. Finally, in Section 6, we summarise our findings, highlight the
contributions of our research, and discuss potential future directions.

Notations Let N denote the set of non-negative integers and N
∗ the set of

positive integers. For d ∈ N, let [d] = 1, . . . , d. Given x ∈ R
d and a ∈ [d], xa

represents the a-th component of x. Similarly, for S ⊂ [d], xS denotes (xa)a∈S .
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Let p, d ∈ N
∗, and consider a matrix A ∈ R

p×d. The matrix AS corresponds
to the columns of A extracted using indices from S, while Ai,j represents the
element of A in the j-th position of row i. The cardinality of a set S is denoted
by |S|. Id represents the d× d identity matrix, and Od denotes the set of d× d
orthogonal matrices. For any d×d matrix A, tr(A) denotes its trace, and Diag(A)
represents the diagonal matrix of size d × d with the diagonal elements of A.
The transpose of a matrix B is denoted by B�. For an invertible matrix Λ,
Λ−1 represents its inverse. Given η ∈ R

d, Diag(η) is the diagonal matrix of
size d × d with η as its diagonal. For r > 0, ‖η‖r =

(∑d
a=1 |ηa|r

)1/r. For any
α ∈ N

d, |α| =
∑d

a=1 αa.

2. Preliminaries

2.1. Problem description

We consider a standard regression problem, where we have access to a dataset
(x(i), y(i))i∈[n], n ∈ N

∗ consisting of independent and identically distributed
(i.i.d.) realisations of a pair of random variables (X,Y ) with probability mea-
sure ν on X × Y ⊂ R

d × R. Our objective is to estimate the regression func-
tion f∗ := arg minf∈F R(f), where R(f) := Eν(�(Y, f(X))) is the risk, � is a
loss function and F a space of functions from R

d to R. At this stage, we do
not impose any assumptions regarding the choice of loss function or the data
distribution.

We consider the multi-index model [33], i.e., a model where the regression
function depends on a low-rank linear transformation of the original variables.

Assumption 2.1 (Feature Learning). We assume that the regression func-
tion f∗ can be expressed as the combination of a rank s linear transformation P
and a function g∗ from R

s → R, i.e.,

∃s ∈ [d], ∃P ∈ R
d×s, P�P = Is, ∃g∗ : Rs → R, ∀x ∈ R

d, f∗(x) = g∗(P�x).

We do not assume any prior knowledge about the value of s. The model
is nonparametric hence it remains broad. Our objective is to simultaneously
estimate both f∗ and the associated linear transformation P , as well as the
dimension s, by means of regularised empirical risk minimisation. Recall the
definition of the empirical risk R̂(f) := 1

n

∑n
i=1 �(y(i), f(x(i))). This approach

offers versatility, allowing its application to various scenarios. Although our focus
lies on the regression setting, we acknowledge the potential of the regularisation-
based method for future work in any setting where a risk can be defined.

2.2. Penalising by derivatives

With these assumptions, it is common to employ derivative-based regularisa-
tion techniques [3, 24]. Under mild regularity assumptions, if we express f
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as f = g(Q�·) with Q ∈ R
d×s, then for all x ∈ R

d, ∇f(x) · ∇f(x)� =
Q∇g(x) · ∇g(x)�Q�, where ∇f(x) ∈ R

d denotes the gradient of f at point x.
Consequently, we observe that∫

X
∇f∇f�ν =

(∫
X

∂f

∂xa

∂f

∂xb
ν

)
a,b∈[d]

has a rank of at most s. This observation motivates us to employ the rank
of
∫
X ∇f∇f�ν as a penalisation. However, the discontinuous nature of the rank

makes this approach challenging for optimisation. To address this, we could
penalise instead by tr

( ∫
X ∇f∇f�ν

)
as a convex relaxation [23].

This strategy would extend the work of [24], which focuses on variable selec-
tion, a special case of feature learning. It corresponds to the constraint that P
from Assumption 2.1 only contains 0 and 1 (with exactly a single one in each
column), resulting in a model where the regression function depends on a limited
number of the original variables.

Assumption 2.2 (Variable Selection). We assume that f∗, the regression func-
tion, actually only depends on s of the d variables, i.e.,

∃s ∈ [d], ∃S ⊂ [d], |S| = s, ∃ g∗ : Rs → R, ∀x ∈ R
d, f∗(x) = g∗(xS).

In this variable selection setting, we can remark that it suffices to penalise by
a simpler quantity. Specifically, under some mild regularity assumptions on the
function f , f does not depend on variable xa if and only if the partial derivative
of f with respect to xa, denoted by ∂f

∂xa
, is null everywhere on X . Hence, the

task is to design a penalty that enforces sparsity in the dependence on different
variables.

To address this, we can draw inspiration from the group Lasso [35], which
extends the Lasso method to enable structured sparsity. The group Lasso en-
courages groups of related quantities to be selected or excluded together by
penalising the sum over each group using an appropriate penalty. For example,
the derivatives with regard to a variable xa at data points x(i) should all be
null if the function does not depend on variable xa. Hence, they constitute a
relevant group for group Lasso.

Combining these observations, [24] proposed a strategy using the fact that
for all a ∈ [d], f does not depend on xa if and only if

∫
X

(
∂f
∂xa

(x)
)2

ν = 0. They
introduced penalties on each variable and summed them to obtain the penalty∑d

a=1
( ∫

X
(

∂f
∂xa

(x)
)2
ν(x)dx

)1/2. However, since these quantities are intractable
due to the unknown nature of ν, they use a data-dependent penalty instead

d∑
a=1

(
1
n

n∑
i=1

(
∂f

∂xa
(x(i))

)2
)1/2

.

By assuming that f belongs to some regular reproducing kernel Hilbert space
(RKHS), the partial derivatives are easily computable, and so is the penalty
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[24] [for a good introduction to RKHS, see 2]. However, this regularisation by
an estimate of the L2 norms of derivatives in the context of RKHS is not suit-
able. Functions that depend on a single variable, such as x1, do not belong to
the RKHS, making it an inappropriate space for addressing this type of prob-
lem. Additionally, another regularisation by the norm in the RKHS is required,
introducing an extra hyperparameter. Moreover, using derivatives only at the
data points limits the exploitation of the power of regularity.

We are confronted with two challenges here. First, how can the penalisation
scheme be improved for variable selection? Second, how can it be adapted for
feature learning? While our primary goal is the latter, we consider the former
as a by-product of our methodology.

To address both challenges, we employ Hermite polynomials [15], although it
is worth noting that various other alternatives could have been considered for
the first problem where rotation invariance is not needed.

2.3. Hermite polynomials for variable selection

To facilitate understanding, let us first consider the simpler case of variable selec-
tion. We employ multidimensional Hermite polynomials due to their suitability
for both variable selection and feature learning. The normalised one-dimensional
Hermite polynomials (hk(x))k≥0 form an orthonormal polynomial basis for the
standard Gaussian measure on R with density 1√

2π e
−x2/2. The first few polyno-

mials are given by1

h0(x) = 1, h1(x) = x, h2(x) = 1√
2
(x2 − 1), h3(x) = 1√

6
(x3 − 3x).

These polynomials possess useful properties that allow their recursive compu-
tation and characterise their growth and their derivatives2

hn+2(x) = x√
n + 2

· hn+1(x) −
√

n + 1
n + 2 · hn(x) (2.1)

h′
n(x) =

√
n · hn−1(x) (2.2)

|hn(x)| ≤ exp(x2/4). (2.3)

Next, we define the multivariate polynomials as follows

(
Hα

)
α∈Nd where ∀x ∈ R

d, Hα(x) =
d∏

a=1
hαa(xa). (2.4)

This family forms an orthonormal basis of the space L2(q) :=
{
f : R

d →
R,
∫
Rd f

2q < +∞
}

where q(x) = 1
(2π)d/2 e

−‖x‖2/2 denotes the standard normal

1Given the regular “physicist” Hermite polynomials Hk (not to be confused with multivari-
ate polynomials defined in Equation (2.4)), we have hk(x) = 1√

2kk!
Hk(x/

√
2) for any k ∈ N

and for the “probabilist” Hermite polynomials Hek, we have hk(x) = 1√
n!Hek(x).

2The last property can be proved using Hermite functions and Cramer’s inequality [28].
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distribution on R
d. We now present a Lemma which justifies the use of the

multivariate Hermite polynomials in the variable selection setting.

Lemma 2.1 (Equivalence for Dependency on Variables). Let f ∈ L2(q) and
express it as f =

∑
α∈Nd f̂(α)Hα. Then for any b ∈ [d],

f does not depend on variable xb ⇐⇒ ∀α ∈
(
N

d
)∗
, αb �= 0 =⇒ f̂(α) = 0.

Proof of Lemma 2.1. For x ∈ R
d, we have h0(x) = 1 and

f(x)= f̂(0)+
∑

α∈(Nd)∗,αb=0

f̂(α)
∏

a∈[d]\{b}
hαa(xa)︸ ︷︷ ︸

does not depend on xb

+
∑

α∈(Nd)∗,αb>0

f̂(α)
∏
a∈[d]

hαa(xa)︸ ︷︷ ︸
depends on xb

,

i.e., f can be decomposed into two additive components, one of which does not
depend on xb. For the component that depends on xb, it is the sum over α ∈ N

d

such that αb is nonzero, yielding the result.

We observe that when f does not depend on a variable, it corresponds to
a specific sparsity pattern in the coefficients f̂(α) with respect to the basis
(Hα)α∈Nd . Indeed, if f does not depend on xb, all coefficients f̂(α) for α in the
group {α ∈

(
N

d
)∗
, αb > 0} must be null. These groups overlap for different

variables, and a similar argument holds for feature learning as we will see in
Section 2.4. This specific sparsity pattern motivates the use of a penalty based
on group Lasso [35], and more specifically overlapping group Lasso [17].

Hence, the Hermite polynomial basis is well-suited to this variable selection
setting, while the space L2(q) is sufficiently large to describe a wide range of
functions. However, it is worth noting that other spaces and well-adapted bases,
such as any orthonormal basis of square-integrable functions, could also be used.
Moreover, we use the Gaussian measure only to define the basis, and our method
can be applied to all distributions.

To define a penalty relevant to variable selection, we examine the derivatives
of Hα. Here, we decompose any f ∈ F as f =

∑
α∈Nd f̂(α)Hα. Let ea denote

the a-th element of the canonical basis of Rd, for a ∈ [d]. Using Equation (2.2),
we obtain the following identities

∂Hα

∂xa
=

√
αaHα−ea (2.5)

∂f

∂xa
=
∑

α∈(Nd)∗

√
αaf̂(α)Hα−ea (2.6)

∫
Rd

(
∂f

∂xa

)2

q =
∑

α∈(Nd)∗
αaf̂(α)2. (2.7)

However, we remark that Equation (2.7) corresponds to the expected version
of the penalty proposed by [24] (when ν = q), which we deemed not suitable
for our problem: indeed, penalising the L2-norm of derivatives does not impose
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enough regularity for statistically efficient non-parametric estimation and thus
requires extra regularisation, as specified by [24].

We consider instead introducing a sequence (ck)k>0 of non-negative reals, to
further regularise and avoid the need for additional regularisation. We consider
the space F , spanned by the family composed of Hα for α = 0 or α ∈ (Nd) such
that c|α| > 0, i.e., F := Span

(
{H0} ∪ {Hα, for α ∈ (Nd)∗ such that c|α|>0}

)
and consider two penalties. First, we define a sparsity-inducing penalty, which
depends on a hyper-parameter r ∈ (0,+∞)

Ωvar(f) =
( d∑

a=1

( ∑
α∈(Nd)∗

αa
1
c|α|

f̂(α)2
)r/2)1/r

.

This penalty encourages sparsity in the dependence of f on individual variables,
as it pushes quantities of the form

(∑
α∈(Nd)∗ αa

1
c|α|

f̂(α)2
)r/2 to be 0. When

this is the case, we obtain that ∀α ∈ (Nd)∗, αa �= 0, f̂(α) = 0, i.e., f does
not depend on variable xa (Lemma 2.1). When r ≥ 1, Ωvar is a norm, which
makes the problem easier to study from a theoretical point of view because
if the loss is convex, this will yield a convex optimisation problem. However,
estimators obtained through regularised empirical risk minimisation often suffer
from bias due to the strong shrinkage associated with sparsity. Convex penalties
can inadvertently reduce the significance of essential variables or features by
excessive shrinkage to enforce sparsity. To address these issues, one can retrain
on the set of selected variables or use concave penalties, which, despite presenting
more analytical challenges, frequently deliver superior results by pushing the
solution towards the boundary and enhancing sparsity [36, 5]. In this work, we
adopt this strategy through the hyper-parameter r when r < 1, which is the
choice used in practice, while r = 1 is used in the theoretical analysis.

The link with the nullity of the derivative can be seen using Equation (2.7)( ∑
α∈(Nd)∗

αa
1
c|α|

f̂(α)2
)r/2

= 0 ⇐⇒
∫
Rd

(
∂f

∂xa

)2

q = 0.

Next, we introduce a smoothness-inducing norm, which penalises higher-order
polynomials, i.e., those with large |α| (the dependence only on |α| is needed for
future rotation invariance)

Ω0(f) =
( ∑

α∈(Nd)∗

1
c|α|

f̂(α)2
)1/2

.

It is important to note that Ω0 is not integrated into the theoretical analysis
and will be used with a much smaller and fixed parameter compared to Ωvar.
Its primary purpose is to enforce numerical stability during the optimisation
procedure, as discussed in Section 3.

The choice of (ck)k∈N∗ significantly influences the behaviour of the penalties.
In this work, we will consider two specific choices: ck = 1k≤M for some M ∈ N
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and ck = ρk for some ρ ∈ [0, 1). Both choices ensure that all three penalties
are well-defined. Notably, when M = 1, Ωvar considered with the quadratic loss
reduces to the basic Lasso problem with linear features [29].

It is worth mentioning that the coefficient f̂(0), which corresponds to the
constant function H0 = 1, is never penalised because it does not depend on any
of the variables.

We then consider estimating f∗ in the setting described in Assumption 2.2
by

fλ,μ
var := arg min

f∈F
R̂(f) + λΩ2

0(f) + μΩr
var(f), (2.8)

with λ a fixed parameter and μ a hyper-parameter to be estimated. When r ≥ 1
and the loss is convex, we obtain a strongly-convex objective function, hence
with a unique global minimiser. When r < 1, which we use in practice, only a
local minimiser can be reached.

2.4. Hermite polynomials for feature learning

We now turn to the feature learning setting described in Assumption 2.1. The
Hermite polynomials are particularly well-suited for feature learning, as they
allow us to bridge the gap between variable selection and feature learning with
only a minor modification of the previous penalties. This suitability is visible
in some important properties which we now describe. First, the multivariate
Hermite polynomials possess a rotation invariance property.

Lemma 2.2 (Rotational Invariance Property of Hermite Polynomials). For
any x, x′ ∈ R

d, any k ∈ N and any orthogonal matrix R ∈ Od,∑
|α|=k

Hα(x)Hα(x′) =
∑
|α|=k

Hα(Rx)Hα(Rx′).

The proof of this lemma is available in Appendix A.1. This property will
be extremely useful to characterise the statistical behaviour of our methods,
as discussed in Section 4. Another key property is that for any R ∈ Od, the
family

(
Hα(R·)

)
α∈Nd also forms a basis of L2(q). Consequently, we can express

any f ∈ F in this basis.
Moreover, we can characterise the derivatives of functions in L2(q) as in

Equation (2.7). Let f ∈ F be written as f =
∑

α∈Rd f̂(α)Hα, then using Equa-
tion (2.6), we have the following expressions for the derivatives∫

Rd

(
∂f

∂xa

)(
∂f

∂xb

)
q =

∑
α∈Nd

√
(αa + 1)

√
(αb + 1)f̂(α + ea)f̂(α + eb). (2.9)

As before, we aim to enhance the regularisation using the sequence (ck)k>0
For r ∈ (0,+∞), we define

Ωfeat(f) =
(
tr
(
M

r/2
f

))1/r
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with (Mf )a,b =
∑
α∈Nd

1
c|α|+1

√
αa + 1

√
αb + 1f̂(α + ea)f̂(α + eb), a, b ∈ [d].

(2.10)

It is worth noting that Mf is a positive semi-definite matrix (see the proof
of Lemma 2.3). The penalty Ωfeat pushes the eigenvalues of of Mf towards 0,
and since the rank of Mf is equal to the number of its non-zero eigenvalues,
the penalty encourages the rank of Mf to be low. It is crucial that c|α| depends
solely on |α| and not on any other quantities depending on α (e.g., maxa∈[d] αa

for example). This property allows us to leverage the rotation invariance prop-
erty described in Lemma 2.2, which is needed for our estimation algorithm in
Section 3 and for obtaining statistical consistency results in Section 4.

Let us now examine some important properties of the proposed regularisation.

Lemma 2.3 (Properties of the Regularisation). For any f ∈ F , the following
properties hold

1. Let R ∈ Od, if we define g = f(R·), then Mf = RMgR
� and Ωfeat(f) =

Ωfeat(g).
2. Ωvar(f) =

(
tr
(
Diag(Mf )r/2

))1/r.
3. If Mf is diagonal, Ωfeat(f) = Ωvar(f).
4. Let Mf = UDU� be the eigendecomposition of Mf , where U ∈ Od and D

is a diagonal matrix. If we define g = f(U ·), then Mg = D is diagonal
and thus Ωfeat(f) = Ωvar(g).

5. Let Mf = UDU� be the eigendecomposition as above. If the rank of D
is s, then g = f(U ·) only depends on variables xa where Da > 0 and f =
g(U�·) only depends on s linear transformations of the original coordi-
nates, namely of (U�x)a for a such that Da > 0.

6. If r = 1,
Ωfeat(f) ≥ inf

R∈Od

Ωvar(f(R·)).

Proof of Lemma 2.3. We proceed by proving each assertion separately.

1. We have for z ∈ R
d

z�Mfz =
d∑

a,b=1

∑
α∈Nd

1
c|α|+1

zazb
√
αa + 1

√
αb + 1f̂(α + ea)f̂(α + eb)

=
d∑

a,b=1

∑
α∈Nd

1
c|α|+1

zazb

〈 ∂f

∂xa
, Hα

〉
L2(q)

〈 ∂f

∂xb
, Hα

〉
L2(q)

=
∑
α∈Nd

1
c|α|+1

〈
z�∇f,Hα

〉2
L2(q).

This shows that Mf is positive semi-definite, writing N (0, Id) for the stan-
dard normal distribution on R

d, we then have

z�Mgz =
∑
α∈Nd

1
c|α|+1

(
EX∼N (0,Id)

(
z�∇g(X)Hα(X)

))2
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=
∑
α∈Nd

1
c|α|+1

(
EX∼N (0,Id)

(
z�R�∇f(RX)Hα(X)

))2

as ∇g(X) = R�∇f(RX)

=
∑
α∈Nd

1
c|α|+1

(
EX∼N (0,Id)

(
z�R�∇f(RX)Hα(RX)

))2

by Lemma 2.2,

=
∑
α∈Nd

1
c|α|+1

(
EX∼N (0,Id)

(
z�R�∇f(X)Hα(X)

))2

by rotation invariance of the standard Gaussian,
= z�R�MfRz,

that is Mg = R�MfR. The second assertion follows by the rotation in-
variance of the trace.

2. It suffices to see that for any a ∈ [d]

Diag(Mf )a,a =
∑
α∈Nd

1
c|α|+1

(αa + 1)2f̂(α + ea)2 =
∑

α∈Nd,αa>0

1
c|α|

αaf̂(α)2,

and therefore

tr
(
Diag(Mf )r/2

)
=

d∑
a=1

( ∑
α∈Nd

αa
1
c|α|

f̂(α)2
)r/2

= Ωvar(f)r.

3. This is a direct consequence of the previous result, because of the definition
of Ωfeat.

4. By applying the first result, we find that Ωfeat(f) = Ωfeat(g) and Mg = D.
Then, using the third result, we conclude that Ωvar(g) = Ωfeat(g). This
establishes the desired result.

5. Consider the function g = f(U ·). From the previous result, we know that
Mg = D is diagonal. According to the definition of Ωvar, we have Da = 0
if and only if g does not depend on variable xa. Consequently, if the rank
of D is s, then g only depends on s variables, specifically those for which
Da > 0. As a result, we can conclude that f = g(U�·) depends solely on
(U�x)a for a such that Da > 0.

6. Let us examine Ωfeat and Ωvar as follows

Ωfeat(f) =
(
tr
(
M

1/2
f

))
, Ωvar(f) =

(
tr
(
Diag(Mf )1/2

))
.

We can decompose Mf as Mf = UDU� using its eigendecomposition. If
we define g = f(U ·), then Mg = D is diagonal, and we have Ωfeat(f) =
Ωfeat(g) = Ωvar(g). Consequently, we obtain the inequality
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Ωfeat(f) ≥ inf
R∈Od

Ωvar(f(R·)).

The rotation invariance of Ωfeat is crucial in the context of feature learning,
as it ensures that the penalty is not biased towards specific directions. Similarly,
Ω0 is also rotation invariant, as can be seen using Lemma 2.2.

We observe that given a function f and its associated matrix Mf , we can
construct a function g consisting of a rotation of the data and f in such a way
that the feature penalty on f is equal to the variable selection penalty on g.
This highlights that the feature learning setting extends the variable selection
problem by allowing data rotation. Furthermore, we can easily determine if g
depends only on a few variables, and therefore if f depends only on a few linear
transformations of the data, which aligns with our assumption for f∗. The last
assertion of Lemma 2.3 will be useful to show that the proof of the consistency for
the variable penalty easily extends to the feature learning setting, see Section 4.

With these considerations, we proceed to estimate f∗ in the setting described
by Assumption 2.1 by solving

fλ,μ
feat := arg min

f∈F
R̂(f) + λΩ2

0(f) + μΩr
feat(f), (2.11)

with λ a fixed parameter and μ a hyper-parameter. We refer to this estimator
as the RegFeaL (regularised feature learning) estimator. As for the relevant
features or variables and dimension, we discuss their computation in Section 3.1.

3. Estimator computation

The computation of the solution for the optimisation problems delineated by (2.8)
and (2.11) requires the employment of several strategic methodologies, which
we will now discuss.

3.1. Variational formulation

We first use the following quadratic variational formulation, similar to the ap-
proach presented in [5]. This formulation is necessary since it is not possible
to directly optimise Equation (2.8) and Equation (2.11) due to the absence
of closed-form solutions. Using other classical optimisation methods such as
gradient-based methods would be less efficient as the overlapping group Lasso
penalty we propose does not have efficient projection algorithms. Indeed, the
variational formulation allows us to rewrite our optimisation problems as the
minimisation over two variables of a specific quantity. Subsequently, we can
alternate the minimisation with respect to each variable, leading to rapid con-
vergence in practice.

We first give the following Lemma which is adapted from [18], which provides
a variational formulation of sums of powers.
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Lemma 3.1 (Variational Formulation). Let r ∈ (0, 2) and u ∈ R
d
+, then

‖u‖r/2r/2 =
( d∑

a=1
ur/2
a

)
= min

η∈Rd
+, ‖η‖r/(2−r)=1

d∑
a=1

ua

ηa
,

with minimum attained at η,∀a ∈ [d], ηa = u
(2−r)/2
a /

(∑d
b=1 u

r/2
b

)(2−r)/r.

Now, let us apply this approach to the penalty used for variable selection.

Lemma 3.2 (Variational Formulation of Variable Selection Penalty). Let f ∈ F
written as f =

∑
α∈Nd f̂(α)Hα and r ∈ (0, 2), then

Ωr
var(f) = min

η∈Rd
+, ‖η‖r/(2−r)=1

d∑
a=1

( ∑
α∈(Nd)∗

αa
1
c|α|

f̂(α)2
)
η−1
a

= min
η∈Rd

+, ‖η‖r/(2−r)=1

( ∑
α∈(Nd)∗

α�η−1 1
c|α|

f̂(α)2
)
,

where η−1 = (1/η1, . . . , 1/ηd) and where the minimum is reached for η such that

∀a ∈ [d], ηa =

(∑
α∈(Nd)∗ αa

1
c|α|

f̂(α)2
)(2−r)/2

(∑d
b=1

(∑
α∈(Nd)∗ αb

1
c|α|

f̂(α)2
)r/2)(2−r)/r . (3.1)

Proof of Lemma 3.2. Recall Ωvar(f) =
(∑d

a=1
(∑

α∈(Nd)∗
αa

c|α|
f̂(α)2

)r/2)1/r and
use Lemma 3.1 with ua =

∑
α∈(Nd)∗ αa

1
c|α|

f̂(α)2.

We can then rewrite (2.8) as

fλ,μ
var , ηλ,μvar = arg min

f∈F, η∈Rd
+

R̂(f) +
∑

α∈(Nd)∗

1
c|α|

f̂(α)2(λ + μα�η−1) (3.2)

subject to f =
∑
α∈Nd

f̂(α)Hα, ‖η‖r/(2−r) = 1.

Recall that Ωvar(f) =
(∑d

a=1
(∑

α∈(Nd)∗ αa
1

c|α|
f̂(α)2

)r/2)1/2. Each term(∑
α∈(Nd)∗ αa

1
c|α|

f̂(α)2
)r/2 quantifies the dependency of f on the variable xa.

We then remark from the definition of ηλ,μvar in Equation (3.1), that

∀a ∈ [d],
(
ηλ,μvar
)r/(2−r)
a

=

(∑
α∈(Nd)∗ αa

1
c|α|

f̂λ,μ
var (α)2

)r/2
∑d

b=1
(∑

α∈(Nd)∗ αb
1

c|α|
f̂λ,μ
var (α)2

)r/2 .
Hence

(
ηλ,μvar
)
a

represents the variation of fλ,μ
var which is due to xa. We can use ηλ,μvar

to estimate the relevant underlying variables by using conventional techniques
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such as thresholding. Specifically, we can consider a variable xa to be relevant
only if ηa is above some predetermined threshold, i.e. Ŝ := {a ∈ [d],

(
ηλ,μvar
)
a
> t}

for some t > 0.
We can proceed in a similar manner for the feature learning setting.

Lemma 3.3 (Variational Formulation of Feature Learning Penalty). Let f ∈
F , Mf from Equation (2.10), with Mf = UDU� its eigendecomposition and r ∈
(0, 2), then

Ωr
feat(f) = min

Λ∈Rd×d
tr
(
Λ−1Mf

)
subject to Λ = RDiag (η)R�

R ∈ Od, η ∈ R
d
+, ‖η‖r/(2−r) = 1,

where the minimum is attained for

Λ = U Diag (η)U� (3.3)

∀a ∈ [d], ηa = D
(2−r)/2
a

(
∑d

b=1 D
r/2
b )(2−r)/r

.

This allows us to rewrite Equation (2.11) as

fλ,μ
feat, Λλ,μ

feat = arg min
f∈F, Λ∈Rd×d

R̂(f) + λΩ2
0(f) + μ tr

(
Λ−1Mf

)
subject to Λ = RDiag(η)R�

R ∈ Od, η ∈ R
d
+, ‖η‖r/(2−r) = 1.

Moreover, with Λ = RDiag(η)R� as above, if we write f in the rotated basis
as f =

∑
α∈Nd f̂(α)Hα(R�·), and g = f(R·) =

∑
α∈Nd f̂(α)Hα, we have Mf =

RMgR
� (Lemma 2.3). Therefore

tr (Λ−1Mf ) = tr
(
Diag (η−1)Mg

)
=

d∑
a=1

η−1
a

∑
α∈(Nd)∗

αa

c|α|
f̂(α)2

=
∑

α∈(Nd)∗

1
c|α|

f̂(α)2α�η−1.

We can then rewrite Equation (3.4) as

fλ,μ
feat, Λλ,μ

feat = arg min
f∈F, Λ∈Rd×d

R̂(f) +
∑

α∈(Nd)∗

1
c|α|

f̂(α)2(λ + μα�η−1) (3.4)

subject to Λ = RDiag(η)R�

R ∈ Od, η ∈ R
d
+, ‖η‖r/(2−r) = 1

f =
∑
α∈Nd

f̂(α)Hα(R�·).
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We see then that the feature learning problem can be viewed as an extension
of the variable selection problem, where we additionally optimise over any pos-
sible data rotation. Conversely, the variable selection problem can be seen as a
particular case of the feature learning problem, where the rotation matrix R is
fixed to the identity matrix.

To estimate the dimension of the underlying feature space P and the features
themselves, we use the eigendecomposition of Λλ,μ

feat = (Rλ,μ
feat)� Diag(ηλ,μfeat)R

λ,μ
feat.

By using the columns of Rλ,μ
feat corresponding to the selected features, denoted

as Ŝ := {a ∈ [d] |
(
ηλ,μfeat

)
a
> t} for some threshold t > 0, we construct our

feature estimator P̂ , i.e., P̂ :=
(
Rλ,μ

feat
)
Ŝ
. We see that by employing alternating

minimisation, we are able to simultaneously learn the regression function and
the underlying features.

3.2. Optimisation procedure

We now discuss how to solve the optimisation problem using alternative min-
imisation, drawing on techniques described in [5]. In the following discussion,
we will focus on the feature learning setting. However, it is important to note
that by simply fixing R = Id in each equation, we can easily revert back to the
variable selection case.

To solve Equation (3.4), we have observed that when the function f is fixed,
the optimal Λ can be determined using Equation (3.3), which involves the ma-
trix Mf .3

When Λ is fixed, we seek to solve the optimisation problem

arg min
f∈F

R̂(f) +
∑

α∈(Nd)∗

1
c|α|

f̂(α)2(λ + μα�η−1)

subject to f =
∑
α∈Nd

f̂(α)Hα(R�·),

where Λ = RDiag(η)R�. However, this can only be solved if R̂ is known, i.e.,
for some chosen loss function �. Until the end of Section 3, we consider the
quadratic loss which is commonly used in regression problems and allows for
closed-form solutions. Otherwise, iterative optimisation algorithms need to be
employed. The problem is then

arg min
f∈F

1
n

n∑
i=1

(
y(i) − f(x(i))

)2 +
∑

α∈(Nd)∗

1
c|α|

f̂(α)2(λ + μα�η−1) (3.5)

subject to f =
∑
α∈Nd

f̂(α)Hα(R�·).

3If f =
∑

α f̂(α)Hα(R�·), to compute Mf , we can remark that with g = f(R·) =∑
α f̂(α)Hα, we have the usual formula for Mg from Equation (2.10) and Mf = RMgR�.
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If we write for any x, x′ ∈ R
d

kΛ(x, x′) =
∑

α∈(Nd)∗

c|α|Hα(R�x)Hα(R�x′)
λ + μα�η−1 , (3.6)

the function kΛ verifies all properties required to be a reproducing kernel [2]. The
condition for a function to be a reproducing kernel is that it is symmetric and
that the associated kernel matrix is positive definite for any set of points. Specif-
ically, for any n ∈ N and x(1), . . . , x(n), the matrix KΛ = (kΛ(x(i), x(j)))i,j∈[n]
must be positive definite (where λ > 0 is useful in this context). We can then
apply the theory of reproducing kernel Hilbert spaces (RKHS). In this case, kΛ
serves as the reproducing kernel for the space F , with associated norm ‖ · ‖Λ,
given by

‖f‖2
Λ =

∑
α∈(Nd)∗

1
c|α|

f̂(α)2(λ + μα�η−1)

(note that f̂ depends on Λ through R). We can interpret the problem as a stan-
dard kernel ridge regression, which we refer to as the “kernel point of view.”
By applying the representer theorem [2], we know that the solution to Equa-
tion (3.5) takes the form

f =
n∑

i=1
δΛ
i kΛ(x(i), ·) + δΛ

0 ,

where δΛ and δΛ
0 can be obtained in closed form using Y = (y(1), . . . , y(n))�

and K = (kΛ(x(i), x(j)))i,j∈[n] as the minimisers of

δΛ, δΛ
0 = arg min

δ∈Rn, δ0∈R

1
n
‖Y −KΛδ − δ01‖2

2 + δ�KΛδ. (3.7)

It is worth noting that the shape of the kernel defined in Equation (3.6) im-
plies that features corresponding to α ∈ N

d with large values of α�η−1 are
penalised more. If ηa is small, indicating that it has been pushed down in
the previous optimisation steps, it suggests that variable xa or the direction
(R�x)a may not be particularly useful for prediction. In such cases, for these
variables/directions to be retained, they would need to contribute significantly
more to the fit compared to others.

Furthermore, we observe that the parameter λ serves the purpose of ensuring
numerical stability when solving linear systems, particularly when α�η−1 can be
null. We recommend setting λ to a significantly smaller value than μ to achieve
this desired stability (e.g, λ = 10−8/d(2−r)/r in our experiments). In fact, it
is possible to fix λ as a predetermined value, eliminating the need for it to be
treated as a hyper-parameter.
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3.3. Sampling approximation of the kernel

We remark that the kernel described in Equation (3.6) is defined as an infinite
sum, which means it is not computable in practice. To overcome this challenge,
we adopt an approximation approach using sampling.

Let us define C(η) =
∑

α∈(Nd)∗
c|α|

λ+μα�η−1 . By defining h(α) = 1
C(η)

c|α|
λ+μα�η−1 ,

for all α ∈ (Nd)∗ we obtain a probability distribution on (Nd)∗. Consequently,
we can express the kernel kΛ(x, x′) as C(η)Eα∼h

(
Hα(R�x)Hα(R�x′)

)
.

Sampling from the distribution h can be challenging, particularly in high-
dimensional settings. Therefore, we employ importance sampling techniques.
For the first choice c|α| = 1|α|≤M , the kernel kΛ(x, x′) can be expressed as

kΛ(x, x′) =
∑

α∈(Nd)∗,|α|≤M

Hα(R�x)Hα(R�x′)
λ + μα�η−1

=
(
M + d

d

)
Eα∼U{|α|≤M}

(
Hα(R�x)Hα(R�x′)

λ + μα�η−1

)
,

where U{|α| ≤ M} is the uniform distribution over {α ∈ (Nd)∗, |α| ≤ M}.
Sampling from this uniform distribution can be achieved by selecting a subset B
of size d uniformly from the set [M + d], sorting the subset into B1 < · · · < Bd,
setting B0 = 0, and using the differences between consecutive values to construct
α. Specifically, for each a ∈ [d], we set αa = Ba − Ba−1 − 1. If the resulting α
is the null tuple, it is rejected, and the sampling process is repeated.

For the choice c|α| = ρ|α| the kernel is

kΛ(x, x′) =
∑

α∈(Nd)∗

ρ|α|

λ + μα�η−1Hα(R�x)Hα(R�x′).

We have developed a methodology called “group sampling” that addresses the
challenges of sampling from the distribution h. To initialise the sampling, we set
all components of η to be equal. This choice ensures unbiasedness among the
possible directions while satisfying the constraint ‖η‖r/(2−r) = 1. As a result,
the kernel takes the form

kΛ(x, x′) =
∑

α∈(Nd)∗

ρ|α|

λ + μ|α|d(2−r)/rHα(R�x)Hα(R�x′).

We can directly sample from the distribution proportional to ρ|α|

λ+μ|α|d(2−r)/r .
The sampling process involves two steps. First, we sample an integer k from the
distribution

k ∼
(
k + d− 1
d− 1

)
ρk

λ + μd(2−r)/rk
.

To perform this sampling, we can precompute a table of probabilities for different
values of k up to a chosen maximum value (e.g., 40). We then normalise these
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probabilities and use them to sample the value of k. Once we have obtained k,
it represents the cardinality of α. In the second step, we sample α uniformly
from the set α ∈ (Nd)∗, |α| = k. This sampling procedure is exact, except for
the controlled approximation introduced by the choice of the maximum value.

We can develop an importance sampling scheme for the other optimisation
steps when the components of η are not equal. Here are the steps.

1. Sort the components of η in ascending order and find the largest gap
between consecutive values. Divide the set [d] into two groups: Group 1,
containing the components above the top of the gap, with size d1, and
Group 2, containing the remaining components, with size d2.

2. Define η̃1 as the minimum value among the components in Group 1, and
η̃2 as the maximum value among the components in Group 2.

3. Sample k1 and k2 from the distribution

k1, k2 ∼
(
k1 + d1 − 1

d2 − 1

)(
k2 + d2 − 1

d2 − 1

)
ρk1+k2

λ + μ
(

k1
η̃1

+ k2
η̃2

) ,
where k1 and k2 represent |α(1)| and |α(2)| respectively, and α(1) corre-
sponds to the components in Group 1.

4. Sample α(1) uniformly from the set α ∈ (Nd1), |α| = k1, and sample α(2)

uniformly from the set α ∈ (Nd2), |α| = k2.
5. This yields

kΛ(x, x′) =
∑

α∈(Nd)∗

C(η̃)
C(η̃)

ρ|α|

λ + μα�η̃−1
λ + μα�η̃−1

λ + μα�η−1Hα(R�x)Hα(R�x′)

= Eα∼Group sampling

(
C(η̃)λ + μα�η̃−1

λ + μα�η−1Hα(R�x)Hα(R�x′)
)
,

with C(η̃) a normalising constant.

By using this importance sampling scheme, we can approximate the desired
distribution accurately, even when the components of η are not equal.

We observe that with the group sampling approach, the distribution of α is
influenced by η through the grouping process, as well as through the values of
η̃1 and η̃2. As the optimisation progresses, the sampled tuples exhibit specific
patterns: in directions that are deemed unimportant (corresponding to small
values of ηa), αa tends to be close to zero, while in directions that are considered
important (corresponding to large ηa), αa is more widely distributed.4

4It is worth noting that using the geometric distribution independently on each dimension
of α would have been a simpler approach. However, this method becomes highly inefficient as
the dimensionality increases, since it would involve sampling numerous α tuples with low im-
portance weights (as determined by Hα(R�x)Hα(R�x′)

λ+μα�η−1 ) due to their alignment with directions
where η is very small (i.e., α�η−1 is small).
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No matter the sampling scheme, we sample α(1), . . . , α(m) from some distri-
bution with importance weight w(α), yielding

kΛ(x, x′) ≈
m∑
j=1

w(α(i))Hα(j)(R�x)Hα(j)(R�x′).

We use this formula to compute the kernel matrix KΛ =
(
kΛ(x(i), x(j))

)
i,j∈[n].

Instead of approximating the matrix KΛ to use in Equation (3.7), we can also
consider the equivalent explicit “feature point of view” by writing f in the form

f =
m∑
j=1

θjw(α(j))Hα(j)(R�·) + θ0H0,

where
θΛ, θΛ

0 = arg min
θ∈Rm, θ0∈R

1
n
‖Y − Φθ − θ01‖2

2 + ‖θ‖2
2, (3.8)

with Φ ∈ R
n×m the matrix filled with w(α(j))Hα(j)(R�x(i)). This is computa-

tionally advantageous when n > m. Otherwise, we use the kernel point of view.
In both cases, we can use (θ, θ0) or (δ, δ0) to rewrite f as

∑
α∈Nd f̂(α)Hα(R�·).

We remark that f̂(α) = 0 when α has not been sampled.
The pseudo-code for the RegFeaL method is provided in Algorithm 1.

Algorithm 1: RegFeaL pseudocode
for i ∈ [niter] do

if i = 0 then
η ← 1/d(2−r)/r;
R ← Id;

else
if feature learning then

Update R and η as in Equation (3.3);
else

Update η as in Equation (3.1);
end

end
Sample α(1), . . . , α(m) using group sampling as in Section 3.3 with η ;
Compute importance weights w(α(1)), . . . , w(α(m));
Compute Hermite features Φ ∈ R

n×m,Φi,j = w(α(j))Hα(j) (R�x(i)) ;
if n > m then

Update θ as in Equation (3.8);
else

Update δ as in Equation (3.7);
end

end

In terms of numerical complexity, each iteration has a cost of

O
(

nm′d + nd2
Hermite features

+ d2(m′)2 + d3

Mf and its eigendecomposition
+ md

Sampling
+ nm′ max(n,m′)

Computing θ or δ

)
,
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where m′ is the number of unique tuples sampled (which is necessarily smaller
than m, and can be much smaller when η is sparse). The parameter m can be
chosen to achieve a balance between computational cost and performance, but
selecting an excessively small value for m may adversely affect performance.
In practice, the number of iterations required for convergence is typically very
small (less than 10), as demonstrated in Section 5. Additionally, it is worth
noting that the computation cost of δ in the feature point of view could be
reduced through the use of the Nyström approximation [25].

4. Statistical properties

We now consider the statistical properties of RegFeaL. We always take r =
1 and we do not consider the approximation due to the computation of the
estimators in this section. Our goal is to provide a high-probability bound on
the expected risk of RegFeaL to gain insights into its generalisation properties
under minimal assumptions to obtain a very general result. We do not consider
the consistency of the e.d.r. space estimation, as this usually requires much
stronger assumptions, such as the linearity condition, the gradient along the
relevant directions to be large enough in norm, or constraint on the loss to be
the square loss, for example [10, 19].

We leverage the results presented in [4], which provide bounds on the maxi-
mum difference between empirical and expected risk, in terms of the expectation
over the class of functions with bounded norm. These bounds are expressed in
terms of the Rademacher complexity of the set {f ∈ F , Ω(f) ≤ D}, where
D > 0 is a fixed bound. By employing these results, we can obtain a probabilis-
tic bound on the constrained estimator and apply McDiarmid’s inequality [7] to
establish a result in probability. Ultimately, Theorem 4.1 provides a probabilis-
tic bound for the RegFeaL estimator, leveraging the aforementioned results as
well as the optimality conditions satisfied by the estimator.

4.1. Setup

We start by making assumptions about the data used to train the model.
Assumption 4.1 (Data). D = (x(i), y(i))i∈[n] is a set of i.i.d data, with (X,Y )
a pair of random variables such that ∀i ∈ [n], (x(i), y(i)) ∼ (X,Y ).

Notice that we do not make strong assumptions on the distribution of the
data, such as independence of the covariates or constraint to be elliptically
contoured, nor do we require is to be known a priori.

Let us introduce some definitions. Let (ck)k>0 be a non-null sequence of
positive reals. We define the function space F as Span

(
{H0} ∪ {Hα, for α ∈

(Nd)∗such that c|α|>0}
)
. Let � be a loss function on R×R, and let the expected

risk R and the empirical risk R̂ be

R(f) = EX,Y

(
�(Y, f(X))

)
and R̂(f) = 1

n

n∑
i=1

�(y(i), f(x(i))).
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We define the functional norm Ω(f) for any f ∈ F as Ω(f) := Ωfeat(f)+|f̂(0)|
or Ω(f) := Ωvar(f) + |f̂(0)|, where f̂(0) represents the constant coefficient of
f . It is important to note that the constraint on the constant coefficient is not
necessary in practice, but we include it for the purpose of theoretical analysis (we
could also add a small weight on |f̂(0)| to this effect). We define the regularised
empirical risk R̂μ(f) for μ > 0 as follows

R̂μ(f) = 1
n

n∑
i=1

�(y(i), f(x(i))) + μΩ(f).

We denote our estimator as fμ := arg minf∈F R̂μ. In order to establish theoret-
ical results, we will rely on the following assumptions.

Assumption 4.2 (Problem Assumptions).

1. The true regression function f∗ := arg minf∈F R(f) exists.
2. For some D > 0, the loss function � is G-Lipschitz continuous in its

second argument for any value of its first argument, i.e., ∀y ∈ Y, ∀x, x′ ∈
X , ∀f ∈ F such that Ω(f) ≤ D, |�(y, f(x)) − �(y, f(x′))| ≤ G · |f(x) −
f(x′)|.

3. For some D > 0, �∞ := sup(x,y)∈X×Y,f∈F,Ω(f)≤D �(y, f(x)) is finite.
4. The loss � is convex on R× R.

For our main result, we will use D = 2Ω(f∗). These assumptions are com-
monly used in the analysis of nonparametric regression [14]. Many commonly
used loss functions in regression problems, such as the quadratic loss, absolute
mean error, Huber loss, or logistic loss, are convex. The Lipschitz continuity con-
dition holds for all of these losses, except for the quadratic loss, which we handle
separately, for example by exploiting the boundedness of the data. If the data is
bounded (i.e., X × Y is bounded in R

d × R), then supx∈X ,f∈F,Ω(f)≤D |f(x)|
is bounded for any D > 0.5 We can then use the convexity of the loss �
and boundedness of Y to justify that �∞ is well-defined. For the quadratic
loss, in this setting, it satisfies Assumption 4.2.2 because (y − f(x))2 − (y −
f(x′))2 = (f(x′) − f(x))(y − f(x) + y − f(x′)), and we can then take G :=
sup(x,y)∈X×Y,f∈F,Ω(f)≤D |y − f(x) + y − f(x′)|.

4.2. Rademacher complexity

First, we apply the Lipschitz continuity assumption to bound the supremum
over a set of functions of the difference between the empirical risk and expected
risk, in expectation over the dataset.

5This can be seen for Ωvar by noticing that Ω(f) can be written as |f̂(0)|+
∑d

a=1 Θa(f) ≥(
|f̂(0)|2 +

∑d
a=1 Θa(f)2

)1/2, with the latter being an RKHS norm with reproducing ker-
nel k(x, x′) = 1 +

∑
α∈(Nd)∗

c|α|
|α| Hα(x)Hα(x′). It follows that f(x) = 〈f, k(X, ·)〉 ≤ f̂(0) +

Ω(f)
√
k(x, x) which is bounded if x is bounded.
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Lemma 4.1 (Use of Gaussian Complexity). Let G be any set of functions, then
under Assumption 4.1, and Assumption 4.2.2,

ED

(
sup
f∈G

(
R(f) − R̂(f)

)
+ sup

f∈G

(
R̂(f) −R(f)

))
≤ 4
√

π

2G ·Gn(G),

where

Gn(G) := ED,ε∼N (0,In)

(
sup
f∈G

1
n

n∑
i=1

εif(x(i))
)

is the Gaussian complexity of the set G [see 6].

See Appendix A.2 for the proof, which we include for the sake of completeness.
This is a close variation of the work presented in [4]. We now need to bound
the Gaussian complexity, when we consider subsets of the working space F with
bounded norm.

Lemma 4.2 (Bound on Gaussian Complexity). Let D > 0, with G := {f ∈
F , Ω(f) ≤ D} with Ω defined as in Section 4.1, under Assumption 4.1, we have

Gn(G) ≤ D ·
√√√√ 1

n

(
1 +

∑
α∈(Nd)∗

c|α|
|α| EX

(
Hα(X)2

))
.

We remark that the result depends heavily on the data distribution through
the expectations EX(Hα(X)2) and the design of the norm through (ck)k>0. We
discuss these in more details in Section 4.4.

Proof of Lemma 4.2. We first consider the norm Ωvar. Let f ∈ G, we have

1
n

n∑
i=1

εif(x(i)) =
∑
α∈Nd

f̂(α)
(

1
n

n∑
i=1

εiHα(x(i))
)

=
∑
α∈Nd

f̂(α)ξ̂(α),

with ξ an infinite vector indexed by (Nd), ξ̂(α) = 1
n

∑n
i=1 εiHα(x(i)). Therefore

sup
f∈G

1
n

n∑
i=1

εif(x(i)) = sup
f∈G

∑
α∈Nd

f̂(α)ξ̂(α) = D · Ω∗
var(ξ).

Now since Ωvar is the sum of d + 1 semi-norms Θ0,Θ1, . . . ,Θd, with

Θ0(f) = |f̂(0)|

Θa(f) =
( ∑

α∈(Nd)∗

αa

c|α|
f̂(α)2

)1/2

,∀a ∈ [d],

we have
Ω∗

var(ξ) = inf
ξ=
∑d

a=0 ξa

sup
a∈{0,...,d}

Θ∗
a(ξa).
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This is an extension of the fact that the set Ω∗
var(ξ) ≤ 1 is the subdifferential

of Ωvar at f = 0, and thus the sum of the d subdifferentials of Ω0, . . . ,Ωd

at f = 0. We consider a ∈ [d], we have

Ω∗
a(ξa)2 =

∑
α∈Nd,αa>0

ξ̂a(α)2
c|α|
αa

,

and Ω∗
0(ξ)2 = ξ̂(0)2.

If we choose ∀α ∈ (Nd)∗, ξ̂a(α) =
√
αa∑

b

√
αb

ξ̂(α), ξ̂0(α) = 0, ξ̂a(0) = 0 and
ξ̂0(0) = ξ̂(0), we have:

Ω∗
var(ξ)2 ≤ sup

(
sup
a∈[d]

∑
α∈Nd,αa>0

ξ̂a(α)2
c|α|
αa

, ξ̂0(0)2
)

≤ sup
(

sup
a∈[d]

∑
α∈Nd,αa>0

ξ̂(α)2
c|α|(∑
b

√
αb

)2 , ξ̂(0)2
)

≤
∑
α∈Nd

ξ̂(α)2
(
c|α|
|α| 1|α|>0 + 1|α|=0

)
.

Let W 2 = Diag
( c|α|

|α| 1|α|>0 + 1|α|=0
)

and Φ the design matrix of all Hα(x(i))
(with n rows and infinitely many columns indexed with α ∈ N

d). We have ξ̂ =
1
nΦ�ε, and

Ω∗
var(ξ)2 ≤ ξ̂�W 2ξ̂ = 1

n2 ε
�ΦW 2Φ�ε.

We compute the expectation of Ω∗
var(ξ)2 for ε ∼ N (0, In), and get

Eε

(
Ω∗

var(ξ)2
)
≤ Eε

(
1
n2 ε

�ΦW 2Φ�ε

)
= 1

n2 tr
(
ΦW 2Φ�)

= 1
n

+ 1
n2

∑
α∈(Nd)∗

n∑
i=1

c|α|
|α| Hα(x(i))2.

We now take expectations with regards to the data D and get

ED,ε

(
Ω∗

var(ξ)2
)
≤ 1

n

∑
α∈(Nd)∗

c|α|
|α| EX

(
Hα(X)2

)
+ 1

n
.

Using Cauchy-Schwartz, ED,ε

(
Ω∗

var(ξ)
)
≤
√

1
n

(
1 +
∑

α∈(Nd)∗
c|α|
|α| EX

(
Hα(X)2

))
.

From Lemma 2.3, we have

Ωfeat(f) ≥ inf
R∈Od

Ωvar(f(R·)).

Then, for an infinite vector ξ indexed by N
d, with ξ̂(α) = 1

n

∑n
i=1 εiHα(x(i))

and ξR an infinite vector indexed by N
d with ξ̂R(α) = 1

n

∑n
i=1 εiHα(Rx(i)), we

have Ω∗
feat(ξ) ≤ supR∈Od

Ω∗
var(ξR).
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Therefore
sup
R∈Od

Ω∗
var(ξR) ≤ sup

R∈Od

1
n2 ε

�ΦRW
2Φ�

Rε,

with ΦR the design matrix of all Hα(Rx(i)) (with n rows and infinitely many
columns indexed with α ∈ N

d). Therefore using Lemma 2.2,

ε�ΦRW
2Φ�

Rε =
∑
i,j

εiεj

(
1 +

∑
α∈(Nd)∗

c|α|
|α| Hα(Rx(i))Hα(Rx(j))

)

=
∑
i,j

εiεj

(
1 +

+∞∑
k=1

ck
k

∑
α∈Nd, |α|=k

Hα(Rx(i))Hα(Rx(j))
)

=
∑
i,j

εiεj

(
1 +

+∞∑
k=1

ck
k

∑
|α|=k

Hα(x(i))Hα(x(j))
)

= ε�ΦW 2Φ�ε,

which is independent of R, therefore yielding exactly the same result as for Ωvar
once expectation with regards to ε and the data is taken.

4.3. Statistical convergence

To gain insight into the proof technique, we initially establish an expectation-
based result for the constrained estimator instead of the regularised estimator.
We bound the expected risk of the function that minimises the empirical risk
over the set of functions with a bounded norm, in expectation over the dataset.
To accomplish this, we use Lemma 4.1 and Lemma 4.2.

Lemma 4.3 (Expected risk of Constrained Estimator). Let D > Ω(f∗) and let
fD = arg minf∈F, Ω(f)≤D R̂(f), under Assumptions 4.1, 4.2.1 and 4.2.2,

ED
(
R(fD)

)
≤ R(f∗) + 4GD√

n

√
π

2

√
1 +

∑
α∈(Nd)∗

c|α|
|α| EX

(
Hα(X)2

)
.

Proof of Lemma 4.3. With G := {f ∈ F , Ω(f) ≤ D}, we have the classical
decomposition of the excess risk

R(fD) −R(f∗) = R(fD) − R̂(fD) + R̂(fD) − R̂(f∗) + R̂(f∗) −R(f∗)

≤ R(fD) − R̂(fD) + R̂(f∗) −R(f∗)

≤ sup
f∈G

R(f) − R̂(f) + sup
f∈G

R̂(f) −R(f).

We then take the expectation over the data on both sides and use Lemma 4.1
and Lemma 4.2

ED
(
R(fD)

)
−R(f∗) ≤ ED

(
sup
f∈F

R(f) − R̂(f) + sup
f∈F

R̂(f) −R(f)
)
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≤ 4
√

π

2G ·Gn(G)

≤ 4GD√
n

√
π

2

√
1 +

∑
α∈(Nd)∗

c|α|
|α| EX

(
Hα(X)2

)
,

hence the desired result.

In addition to the expectation-based result, obtaining a result with high
probability for the constrained estimator is also of interest. This is achieved
in Lemma A.1, presented in Appendix A.3, by using McDiarmid’s inequality
[7]. To apply this inequality, an additional assumption is required: the bounded-
ness of the loss (Assumption 4.2.3). However, the most significant and relevant
result is the one obtained for the estimator that minimises the regularised em-
pirical risk. This result is more realistic and imposes the additional requirement
of convexity of the loss function.

Theorem 4.1 (High-Probability Bound on Expected Risk of Regularised Esti-
mator). Under Assumption 4.1 and Assumptions 4.2.1, 4.2.2, 4.2.3 with D =
2Ω(f∗), 4.2.4, then for any δ ∈ (0, 1), with the choice of regularising parameter

μ = 8G√
n

√
π

2

√
1 +

∑
α∈(Nd)∗

c|α|
|α| EX

(
Hα(X)2

)
+ �∞2

√
2

Ω(f∗)
√
n

√
log 2

δ
,

with probability larger than 1 − δ

R(fμ) ≤ R(f∗)

+ Ω(f∗)
(

16G√
n

√
π

2

√
1 +

∑
α∈(Nd)∗

c|α|
|α| EX

(
Hα(X)2

))
+ �∞4

√
2√

n

√
log 1

δ

and Ω(fμ) ≤ 2Ω(f∗).

We now discuss the meaning of Theorem 4.1. The theorem states that with
high probability, under the appropriate choice of the regularisation parameter,
the norm of the estimator fμ, Ω(fμ), is bounded by twice the norm of the
true regression function f∗, Ω(f∗). We remark that the choice of regularisation
parameter depends on Ω(f∗), however, this is not the case in the bounded
setting, see the discussion in Section 4.4. Under Assumption 2.1 (feature learning
setting) or Assumption 2.2 (variable selection setting), we know that Ω(f∗) does
not depend explicitly on d but only on s, the underlying number of variables or
dimension of the linear subspace.

The norm Ω(f∗) also helps us bound the difference between the expected
risk of the estimator R(fμ) and the expected risk of the true regression function
R(f∗). This difference, denoted as R(fμ)−R(f∗), has a dependency on the num-
ber of samples n, with a convergence rate of n−1/2, as expected for a Lipschitz
loss and a well-specified model. However, the dependency on the dimension d

of the original data is somewhat concealed in
√

1 +
∑

α∈(Nd)∗
c|α|
|α| EX

(
Hα(X)2

)
.



Nonparametric linear feature learning 4101

We provide a detailed analysis of this dependency for specific choices of the data
distribution X and the sequence (ck)k>0 in Section 4.4.

Proof of Theorem 4.1. The proof is adapted from [4]. Define fμ∗ as the min-
imiser of Rμ := R + μΩ over F . Now, for D > 0, τ > 0 define the following
convex set

CD,τ = {f ∈ F ,Ω(f) ≤ D,Rμ(f) −Rμ(fμ∗) ≤ τ}.

It has boundary

∂CD,τ = {f ∈ F ,Ω(f) ≤ D,Rμ(f) −Rμ(fμ∗) = τ},

i.e., the second constraint is the saturated one, for well chosen D and τ . This
is because, if we consider a f such that Ω(f) = D, since the optimality condi-
tions for fμ∗ give that Ω∗(R′(fμ∗)) ≤ μ, (with R′ any subgradient of R which
necessarily exists because R is convex since � is convex) we have

Rμ(f) −Rμ(fμ∗) = R(f) + μΩ(f) −R(fμ∗) − μΩ(fμ∗)
≥ 〈R′(fμ∗), (f − fμ∗)〉 + μΩ(f) − μΩ(fμ∗)
by convexity with 〈·, ·〉 associated to Ω
≥ −Ω∗(R′(fμ∗)

)
Ω(f − fμ∗) + μΩ(f) − μΩ(fμ∗)

by Holder’s inequality
≥ −μΩ(f − fμ∗) + μΩ(f) − μΩ(fμ∗) by optimality of fμ∗

≥ 2μΩ(f) − 2μΩ(fμ∗) by the triangular inequality
≥ 2μD − 2μΩ(fμ∗) since Ω(f) = D,

≥ 2μΩ(f∗) by choosing D = 2Ω(f∗), since Ω(f∗) ≥ Ω(fμ∗)
≥ τ, by choosing τ = μΩ(f∗),

hence the desired result on the active constraint of the boundary. We now fix τ =
μΩ(f∗) and D = 2Ω(f∗).

Now if fμ does not belong to CD,τ , since fμ∗ does, there is an element f in the
segment [fμ, fμ∗] that belongs to ∂CD,τ , i.e, Ω(f) ≤ D and Rμ(f)−Rμ(fμ∗) =
τ . Because the loss is convex, we have that R̂μ(f) ≤ max{R̂μ(fμ), R̂μ(fμ∗)} =
R̂μ(fμ∗). Therefore

τ = Rμ(f) −Rμ(fμ∗) ≤ Rμ(f) −Rμ(fμ∗) + R̂μ(fμ∗) − R̂μ(f)

≤ R(f) − R̂(f) + R̂(fμ∗) −R(fμ∗). (4.1)

From the proof of Lemma A.1, for all δ ∈ (0, 1)

sup
f∈F, Ω(f)≤D

R(f) − R̂(f) + sup
f∈F, Ω(f)≤D

R̂(f) −R(f)

≤ 4GD√
n

√
π

2

√
1 +

∑
α∈(Nd)∗

c|α|
|α| EX

(
Hα(X)2

)
+ �∞2

√
2√

n

√
log 1

δ
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with probability larger than 1 − δ.
We apply this to the RHS of Equation (4.1) (as Ω(f) ≤ D and Ω(fμ∗) ≤ D),

which is smaller than 4GD√
n

√
π
2

√
1 +
∑

α∈(Nd)∗
c|α|
|α| EX

(
Hα(X)2

)
+ �∞2

√
2√

n

√
log 1

δ

with probability larger than 1 − δ.
Now if τ is such that

4GD√
n

√
π

2

√
1 +

∑
α∈(Nd)∗

c|α|
|α| EX

(
Hα(X)2

)
+ �∞2

√
2√

n

√
log 1

δ
≤ τ, i.e.,

Ω(f∗) 8G√
n

√
π

2

√
1 +

∑
α∈(Nd)∗

c|α|
|α| EX

(
Hα(X)2

)
+ �∞2

√
2√

n

√
log 1

δ
≤ μΩ(f∗)

8G√
n

√
π

2

√
1 +

∑
α∈(Nd)∗

c|α|
|α| EX

(
Hα(X)2

)
+ �∞2

√
2√

nΩ(f∗)

√
log 1

δ
≤ μ

then fμ belongs to CD,τ with probability larger than 1 − δ.
If we choose μ = 8GD√

n

√
π
2

√
1 +
∑

α∈(Nd)∗
c|α|
|α| EX

(
Hα(X)2

)
+ �∞2

√
2

Ω(f∗)
√
n

√
log 1

δ ,
then

Rμ(fμ) ≤ Rμ(fμ∗) + τ

≤ Rμ(fμ∗) + τ

≤ Rμ(f∗) + τ

≤ R(f∗) + μΩ(f∗) + τ

≤ R(f∗) + 2μΩ(f∗)
≤ R(f∗)

+ Ω(f∗)
(

16G√
n

√
π

2

√
1 +

∑
α∈(Nd)∗

c|α|
|α| EX

(
Hα(X)2

))
+ �∞4

√
2√

n

√
log 1

δ

and Ω(fμ) ≤ D = 2Ω(f∗) with probability larger than 1 − δ.

4.4. Dependence on problem parameters

As we have seen, Theorem 4.1 depends on some quantities we detail now. First,
we provide a definition of subgaussian real variables, as given by [30].

Definition 4.1 (Subgaussian Variables). Let Z be a real-valued (not necessarily
centred) random variable. Z is subgaussian with variance proxy σ2 if and only
if

∀t > 0,max (P(Z ≥ t),P(Z ≤ −t)) ≤ e−
t2

2σ2 .

Data distribution To begin, we aim to establish an upper bound for the
expectation of the squared Hermite polynomials over the covariates.
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Lemma 4.4 (Analysis of Data-Dependent Terms in Theorem 4.1). Let α ∈ N
d.

1. If X ∼ N (0, Id), then
EX(Hα(X)2) = 1.

2. If X is such that ‖X‖2 ≤ R a.s., then

EX(Hα(X)2) ≤ e
R2
2 .

3. If X is such that ‖X‖2 is a subgaussian variable with variance proxy
bounded by σ2 < 1/(36e), then

EX(Hα(X)2) ≤ e36eσ2 ≤ e.

The proof of this lemma is provided in Appendix A.4. Note that independence
between the coordinates is not required, except in the first case, which is an
illustration of the definition of the Hermite polynomials. It is worth noting that
except in the Gaussian case, the bounds may not be ideal with respect to their
dependency on d. However, these bounds rely heavily on the bound for Hermite
polynomials in Equation (2.3), which is valid for all points on the real line and
for all one-dimensional Hermite polynomials. Thus, it is expected that better
bounds in expectation are possible.

Choice of (ck)k>0 The quantities in Theorem 4.1 are influenced by the design
of the penalty, which is determined by the choice of the sequence (ck)k>0. This
dependency is observed in Ω(f∗), �∞, and

√
1 +
∑

α∈(Nd)∗
c|α|
|α| EX

(
Hα(X)2

)
. It

is worth noting that the bounds provided in Lemma 4.4 do not rely on the
specific value of α. Therefore, our focus is now on bounding the summation
term

∑
α∈(Nd)∗

c|α|
|α| .

Lemma 4.5 (Analysis of Terms Depending on (ck)k>0 in Theorem 4.1). If c|α| =
ρ|α|, with ρ ∈ (0, 1) ∑

α∈(Nd)∗

c|α|
|α| ≤ 1

(1 − ρ)d

and if c|α| = 1|α|≤M ,

∑
α∈(Nd)∗

c|α|
|α| ≤ M + 1

d

(
M + d

M + 1

)
.

The proof of this result can be found in Appendix A.5. By combining the
different results, in the case of bounded data, for example, we can derive a
corollary of Theorem 4.1 as follows

Corollary 4.1 (High-Probability Bound on Expected Risk of Regularised Esti-
mator for Bounded Data). Under Assumption 4.1 and Assumptions 4.2.1, 4.2.2,
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4.2.3 with D = 2Ω(f∗), 4.2.4, if ‖X‖2 ≤ R a.s., (ck)k>0 = (ρk)k>0, then for
any δ ∈ (0, 1), with the choice of regularising parameter

μ = G√
n

√
1 + eR2/2

(1 − ρ)d

(
8
√

π

2 + 2
√

2
√

log 2
δ

)
,

with probability larger than 1 − δ

R(fμ) ≤ R(f∗) + Ω(f∗) G√
n

√
1 + eR2/2

(1 − ρ)d

(
16
√

π

2 + 4
√

2
√

log 2
δ

)
and Ω(fμ) ≤ 2Ω(f∗).

The proof is provided in Appendix A.6. We note that the choice of the reg-
ularisation parameter is independent of the unknown norm Ω(f∗) or the dis-
tribution of X, as long as R is known. In the derived bound, the value of G
can be independent of d for certain loss functions such as the logistic loss. We
observe that Ω(f∗) does not depend on the dimension d, but solely on the num-
ber of variables or the dimension of the linear subspace s. It is important to
note that the method exhibits a strong dependence on the dimension, which
does not overcome the curse of dimensionality. However, this is merely the first
step towards solving the multi-index model through regularised empirical risk
minimisation, leaving room for future work and improvements.

5. Numerical study

In this section, we present the numerical results that demonstrate the behaviour
and performance of RegFeaL. The implementation of the estimator, as well as
the code to run the experiments, can be accessed online at https://github.
com/BertilleFollain/RegFeaL. The RegFeaL estimator class is designed to
be compatible with the Scikit-learn API [22], ensuring seamless integration with
existing machine learning workflows.

5.1. Setup

We describe the experiment setup, which includes data simulation, training
procedure and metrics for evaluation.

Data In each generated dataset, depending on whether we consider feature
learning or variable selection, we construct the linear subspace P differently. In
the feature learning case, we sample a matrix from the set of d× d orthogonal
matrices Od and select its first s columns to form P . For variable selection, we
simply consider the first s variables to be the relevant ones. Note that while
our experiments were conducted with independently generated covariates, our
method is invariant to rotations (in the feature learning case) and sign changes

https://github.com/BertilleFollain/RegFeaL
https://github.com/BertilleFollain/RegFeaL
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of the data (in both feature learning and variable selection). As such, it is robust
to potential correlation between the covariates. The i.i.d dataset (x(i), y(i))i∈[n]
is then generated as follows

X ∼ U{[−
√

3,
√

3]}d

f∗(x) = sin(2(P�x)1) + sin(2(P�x)2),∀x ∈ R
d (sinus dataset)

f∗(x) = (P�x)1 + (P�x)2 − (P�x)21 − (P�x)22 + 2(P�x)1(P�x)32 − 4,
∀x ∈ R

d (polynomial dataset)
Y = f∗(X) + σε, ε ∼ N (0, 1).

Each component of X has mean 0 and variance 1. Notably, in both datasets,
the true regression function f∗ depends on s = 2 linear combinations of the
original variables. The importance of the noise can be controlled through the
parameter σ. The test set (x(i)

test, y
(i)
test)i∈[ntest] is generated in a similar manner

as the training set.

Training The loss that we consider is the quadratic loss. We train RegFeaL
on the training set with fixed values of λ and r, and we cross-validate on μ
and ρ. The number of iterations niter depends on the experiment. Some of the
parameters are the same in all experiments, such as ntest = 5000, s = 2, λ =
10−8/d(2−r)/r, r = 0.33.

The values of the grid used for cross-validation can be found in Appendix B.
The training pipeline differs between Experiment 1 and Experiments 2 and 3.

In Experiment 1, for each parameter tuple (ρ, μ), we estimate the number
of relevant dimensions ŝ using ŝ := |{a ∈ [d], (ηλ,μfeat)

r/(2−r)
a ≥ 1/d}|. Recall that

η
r/(2−r)
a , represents the importance of feature a, and at initialisation, it is set

to 1/d for all a ∈ [d]. We then select P̂ as the set of ŝ eigenvectors of Λλ,μ
feat

corresponding to the ŝ largest eigenvalues. Finally, we train a final regressor
using Multivariate Adaptive Regression Splines (MARS) [12] on the dataset
(P̂�x(i), y(i))i∈[n].

In Experiments 2 and 3, we simply use the output fλ,μ
feat of Algorithm 1 as the

prediction function. In both cases, the R2 score is used as the evaluation metric,
which is described in Equation (5.1).

Metrics We evaluate the performance of RegFeaL using two metrics: the R2

score [32] for regression performance and an adapted Grassmannian distance for
feature learning performance.

The R2 score is computed as

1 −
∑ntest

i=1 (y(i)
test − y

(i)
pred)2∑ntest

i=1 (y(i)
test − ȳtest)2

, (5.1)

where ȳtest is the mean of the test response values. The R2 score can be computed
on both the training and test sets. A score of 1 indicates the best possible
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performance, while a score of −∞ indicates the worst performance. A constant
estimator that predicts the average response value corresponds to a score of 0.

For the feature learning score, we compute the Grassmannian distance be-
tween the true subspace P and the estimated subspace P̂ , which corresponds to
the s largest eigenvalue for the score computation. Note that the knowledge of s
is only necessary to compute this score and not necessary for training. Note also
that this is not the same P̂ that was used to retrain MARS in Experiment 1,
as the dimension of that one is estimated. The score is defined as

‖P (P�P )−1P� − P̂ (P̂�P̂ )−1P̂�‖2/(2s) if s ≤ d/2
‖P (P�P )−1P� − P̂ (P̂�P̂ )−1P̂�‖2/(2(d− s)) if s > d/2,

where s is the number of relevant dimensions. The best possible score is 1,
indicating a perfect match between the true and estimated subspaces, while a
score of 0 indicates no correspondence between the subspaces.

In the setting of variable selection, this discussion can be adapted as dis-
cussed in Section 3. The omitted details of the experiments can be found in
Appendix B.

5.2. Results

We now provide the results of the experiments.

Experiment 1 In this experiment, we investigate the dependence on the di-
mension of the variables d and the number of samples n. We perform the training
procedure described earlier, including the retraining step using MARS [12] on
the projected data. We evaluate the performance on both the sinus dataset and
the polynomial dataset with noise levels σ = 0.5 and σ = 2.5 respectively. For
the sinus dataset, we consider both the variable selection and feature learn-
ing settings. We conduct a total of niter = 5 iterations, and the grid used for
cross-validation can be found in Appendix B.

To provide a comparison, we also include the performance of the state-of-the-
art method MAVE [34], which is based on local averaging and does not use
regularisation. In our implementation, we follow the recommended procedure for
MAVE, which involves first training the Outer Product of Gradients (OPG)
method to determine the effective dimensionality reduction (e.d.r) space. We use
cross-validation to select the underlying dimension of the space and then retrain
the model using MARS on the projected data. This allows us to compute the
R2 score. For the feature learning score, we compute it based on the learned
effective dimensionality reduction (e.d.r) space. Specifically, we choose s = 2 as
the dimension of the subspace to compute the score, following the same approach
as RegFeaL.

Additionally, we include the R2 score for Kernel Ridge, which uses kernel
ridge regression with the kernel k(x, x′) =

∑
α∈(Nd)∗ c|α|Hα(x)Hα(x′) and the

hyperparameter λ, which we cross-validate over. To provide a comprehensive
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Fig 1. Performance dependency on d and n for the sinus dataset in the variable selection
setting.

analysis, we also display the noise level, which represents the best achievable
score considering the noise level σ. We repeat the entire experiment five times,
each time with different data, and present the average results with error bars of
±σexp/

√
5, where σexp is the standard deviation of the scores across the repeti-

tions. The results of the experiment can be found in Figures 1, 2, and 3.
In all figures, we observe that the performance improves with a higher number

of samples (n), which is expected, while it deteriorates with a larger dimension
(d), which is typical behaviour.

In Figure 1, we focus on the R2 score for the sinus dataset in the variable
regression setting. We observe that RegFeaL performs well in both dimensions
(10 and 40) without requiring a large number of samples. However, Kernel
Ridge fails in dimension 40 as the kernel cannot effectively capture the depen-
dency on only 2 variables. As for MAVE, it does not benefit from the knowledge
that this is a variable selection problem, unlike RegFeaL, resulting in a higher
sample requirement, particularly in dimension 40.

In Figure 2, we examine the R2 score and the feature learning score for
the sinus dataset in the feature learning setting. We observe that MAVE and
RegFeaL exhibit similar behaviour in dimension 10, reaching the noise level for
the R2 score and achieving a perfect feature learning score with enough samples.
However, in dimension 40, MAVE struggles significantly when the number of
samples is low, while RegFeaL requires a substantially larger sample size to
accurately learn the e.d.r. space. Our interpretation is that in this setting, where
the true regression function uses a sinus, RegFeaL is hindered by its definition
using a basis of polynomials.

In Figure 3, we investigate the R2 score and the feature learning score for the
polynomial dataset in the feature learning setting. The feature learning perfor-
mance of MAVE and RegFeaL is similar in this scenario. Regarding the R2

score, Kernel Ridge encounters difficulties in dimension 40 as it does not ben-
efit from the underlying hidden structure. In dimension 10, RegFeaL performs
similarly to MAVE, but in dimension 40, it outperforms MAVE as MAVE
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Fig 2. Performance dependency on d and n for the sinus dataset in the feature learning
setting.

tends to be overly restrictive and consistently underestimates the number of
linear features required to provide a good fit when the e.d.r. space is not per-
fectly learnt. In contrast, RegFeaL is less conservative, allowing us to leverage
more features when the number of samples is too low to accurately estimate
them.

Experiment 2 In this experiment, we investigate the impact of the number
of random features m (as discussed in Section 3.3) on the R2 score and feature
learning score for different values of n. The dimension d is fixed at 10, while the
true underlying dimension s is 2. We consider the noiseless setting σ = 0 and use
the sinus dataset. The same methodology is applied for error bar computation
as in Experiment 1. The results are presented in Figure 4.

We observe that both the R2 score and feature learning score improve with
an increase in the number of random features m. This observation aligns with
the discussion in Section 3.3, where a larger value of m leads to a better approx-
imation of the kernel kΛ, and allows for a wider range of α and Hα, resulting
in enhanced descriptive power and improved fit and prediction of the subspace.
However, we note that beyond a certain value of m, the performance improve-
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Fig 3. Performance dependency on d and n for the polynomial dataset in the feature learning
setting.

Fig 4. Influence of the number of random features.

ment levels off while computational costs continue to rise. This suggests that
choosing excessively large values of m does not provide any significant bene-
fit.
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Fig 5. Training behaviour.

Experiment 3 In this experiment, we maintain the number of samples n =
5000, the number of random features m = 2500, the dimension d = 10, and the
underlying dimension s = 2 fixed. We work with the noiseless sinus dataset, i.e.,
σ = 0, and examine the training behaviour of RegFeaL over the iterations. We
train the model using cross-validation based on the R2 score and set niter = 10.
The results are depicted in Figure 5.

In Figure 5a, we observe that the R2 score improves across the iterations on
both the test set and the training set. However, the behaviour is not strictly
increasing on the training set. This can be attributed to the fact that the kernel
approximation differs at each iteration, leading to variations in the fit.

Figure 5b demonstrates that the features are learned more rapidly than the
fit. It is important to note that the feature learning score assumes knowledge of
the underlying dimension s = 2. Hence, an important question is whether the
estimated value of s is accurate.

In Figure 5c, we observe the values of η
r/(2−r)
a for all a ∈ [d] across the

iterations. Recall that
∑d

a=1 η
r/(2−r)
a = 1 and that η

r/(2−r)
a represents the rel-

ative importance of feature (R�x)a. Initially, all ηr/(2−r)
a are equal to 1/d. As

the training progresses, most of the components of ηr/(2−r) decrease, while two
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components increase, surpassing the threshold of 1/d. These two components
correspond to the relevant dimensions, indicating that the correct number of
dimensions would be easily predicted. Additionally, we observe that these two
components of η have relatively similar values, which aligns with the symmetry
of the regression function in this example.

Figure 5d displays the empirical density (in log scale) of αa for two dif-
ferent values of a ∈ [d] (specifically, asmall := arg mina∈[d] ηa and alarge :=
arg maxa∈[d] ηa for the final η) at two different iterations: the first and last
iteration. During the first iteration, the distributions of αa for alarge and asmall
are equal, which aligns with the initialisation discussed in Section 3.3 (all com-
ponents of η are equal). However, at the end of the optimisation, we observe
that the distribution of αasmall , corresponding to a non-important linear feature,
remains almost constant at 0. Conversely, the distribution of αalarge , represent-
ing an important linear feature, is more widely spread, which is beneficial to the
fit.

6. Conclusion

We addressed the challenge of prediction function estimation in multi-index
models by proposing a novel approach RegFeaL. Our method combines em-
pirical risk minimisation with derivative-based regularisation to simultaneously
estimate the prediction function, the relevant linear transformation, and its di-
mension. By leveraging the orthogonality and rotation invariance properties of
Hermite polynomials, RegFeaL captures the underlying structure of the data.
Through alternative minimisation, we iteratively rotate the data to better align
it with the leading dimensions.

Theoretical results support the statistical consistency of the expected risk
of our estimator and provide explicit rates of convergence. We demonstrated
the performance and effectiveness of our method through extensive empirical
experiments on diverse datasets. One of the strengths of our approach is that
it does not rely on strong assumptions about the distribution shape or prior
knowledge of the subspace dimension.

However, we acknowledge that our method is still subject to the curse of
dimensionality, as indicated by the theoretical results showing an exponential
dependence on the dimension of the covariates. Nonetheless, we believe that
our findings will contribute to further developments in representation learning
and high-dimensional data analysis. Regularisation is a versatile approach that
can be applied to a wide range of problems where an empirical risk can be
formulated, foregoing the limitations of some methods solely based on the square
loss in supervised learning.

There are several interesting directions for future research. One possibility is
exploring alternative bases other than Hermite polynomials. Additionally, inves-
tigating more efficient algorithms and strategies for handling high-dimensional
data could be valuable. Furthermore, examining the applicability of our ap-
proach to various types of problems and datasets would also be worth pursu-
ing.
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Appendix A: Additional proofs and results

A.1. Proof of Lemma 2.2

Proof of Lemma 2.2. We denote by N (0, Id) the d-dimensional normal distri-
bution with mean 0 ∈ R

d and covariance matrix Id. For any k ∈ N, x, x′ ∈ R
d,

using ∀z ∈ R, hk(z) = 1√
k!EY∼N (0,1)(z + iY )k (which can be shown by recur-

rence), we have

∑
|α|=k

Hα(x)Hα(x′) =
∑
|α|=k

d∏
a=1

hαa(xa)hαa(x′
a)

=EY,Y ′∼N (0,Id)

( ∑
|α|=k

d∏
a=1

1
αa!

(xa + iYa)αa(x′
a + iY ′

a)αa

)

= 1
k!EY,Y ′∼N (0,Id)

((
x�x′ − Y �Y ′ + i(x�Y ′ + Y �x′)

)k)
.

This shows rotational invariance, that is, for any orthogonal matrix R ∈ Od,∑
|α|=k

Hα(x)Hα(x′) =
∑
|α|=k

Hα(Rx)Hα(Rx′).

A.2. Proof of Lemma 4.1

Proof of Lemma 4.1. Define H = {h : (x, y) ∈ X × Y → �(y, f(x)), for f ∈ G}.
We have that

sup
f∈G

(
R(f) − R̂(f)

)
+ sup

f∈G

(
R̂(f) −R(f)

)
= sup

h∈H

(
E(h(z)) − 1

n

n∑
i=1

h(z(i))
)

+ sup
h∈H

(
1
n

n∑
i=1

h(z(i)) − E(h(z))
)
.

We define the Rademacher complexity of the set H by

Rn(H) = ED,ε∼
(
U{−1,1}

)n( sup
h∈H

1
n

n∑
i=1

εih(z(i))
)
,

where ε ∼
(
U{−1, 1}

)n means that each component of ε is independent and
follows the uniform distribution over the set {−1, 1}.

Using Proposition 4.2 from [4], we obtain

ED

(
sup
h∈H

E(h(z)) − 1
n

n∑
i=1

h(z(i))
)

≤ 2Rn(H)

ED

(
sup
h∈H

1
n

n∑
i=1

h(z(i)) − E(h(z))
)

≤ 2Rn(H).
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Now from Assumption 4.2.2 and using Proposition 4.3 from [4]

Rn(H) ≤ G ·Rn(G),

with

Rn(G) = ED,ε∼
(
U{−1,1}

)n( sup
f∈G

1
n

n∑
i=1

εif(x(i))
)
.

We have from Exercise 4.9 from [4] that Rn(G) ≤
√

π
2Gn(G). Combining all

inequalities yields the desired result.

A.3. Lemma A.1 and its proof

Lemma A.1. Under Assumption 4.1, Assumptions 4.2.1, 4.2.2, 4.2.3, with D ≥
Ω(f∗), and fD := arg minf∈F, Ω(f)≤D R̂(f), for any δ ∈ (0, 1), with probability
larger than 1 − δ

R(fD) ≤ R(f∗) + 4GD√
n

√
π

2

√
1 +

∑
α∈(Nd)∗

c|α|
|α| EX

(
Hα(X)2

)
+ �∞2

√
2√

n

√
log 1

δ
.

Proof of Lemma A.1. Define G := {f ∈ F , Ω(f) ≤ D}. We apply McDiarmid’s
inequality [7] to supf∈G R(f)−R̂(f)+supf∈G R̂(f)−R(f), which has bounded
variation with constant 4�∞/n, yielding that for all δ ∈ (0, 1)

PD

(
sup
f∈G

R(f) − R̂(f) + sup
f∈G

R̂(f) −R(f) ≤

E
(
sup
f∈G

R(f) − R̂(f) + sup
f∈F

R̂(f) −R(f)
)

+ �∞2
√

2√
n

√
log 1

δ

)
≥ 1 − δ.

We recall that

R(fD) −R(f∗) ≤ sup
f∈G

R(f) − R̂(f) + sup
f∈G

R̂(f) −R(f)

and from the proof of Lemma 4.3

E

(
sup
f∈G

(
R(f) − R̂(f)

)
+ sup

f∈G

(
R̂(f) −R(f)

))
≤ 4GD√

n

√
π

2

√
1 +

∑
α∈(Nd)∗

c|α|
|α| EX

(
Hα(X)2

)
,

yielding the final result.
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A.4. Proof of Lemma 4.4

Proof of Lemma 4.4. The result for centred normal data with identity covari-
ance matrix is by the construction of the Hermite polynomials [15].

If ‖X‖2 is bounded by R, using the bound from Equation (2.3), we get that

EX(Hα(X)2) ≤ E(e‖X‖2/2) ≤ EX

(
eR

2/2) ≤ e
R2
2 .

If X is such that ‖X‖ is subgaussian with variance proxy σ2, we know that
∀λ ≤ 1/(6

√
2eσ), then EX(e‖X‖2λ2) ≤ e72eλ2σ2 [30, Proposition 2.5.2]. There-

fore, using the bound from Equation (2.3), we have

EX(Hα(X)2) ≤ E(e‖X‖2/2) ≤ e36eσ2 ≤ e

This concludes the study of EX

(
Hα(X)2

)
.

A.5. Proof of Lemma 4.5

Proof of Lemma 4.5. Using d-dimensional geometric random variables, we know
that ∑

α∈Nd

(1 − ρ)dρ|α| = 1, and therefore
∑

α∈(Nd)∗

ρ|α|

|α| ≤ 1
(1 − ρ)d .

For the other setting,

∑
α∈(Nd)∗,|α|≤M

1
|α| =

M∑
k=1

1
k

(
d− 1 + k

d− 1

)
≤ M + 1

d

(
M + d

M + 1

)
,

which concludes the proof.

A.6. Proof of Corollary 4.1

Proof of Corollary 4.1. First, we note from Lemma 4.4 that for any α ∈ N
d,

we have EX

(
Hα(X)2

)
≤ eR

2/2. Additionally, from Lemma 4.5, we know that∑
α∈(Nd)∗

c|α|
|α| ≤ 1

(1−ρ)d .
Next, we aim to improve the use of McDiarmid’s inequality by bounding the

deviation of supf∈F,Ω(f)≤D R(f)− R̂(f) + supf∈F,Ω(f)≤D R̂(f)−R(f) when a
single data point (x(i), y(i)) is changed to (x̃(i), ỹ(i)) changing the dataset from
D to D̃. In the original proof of Theorem 4.1, we used 4l∞/n as our bound, but
we can provide a tighter bound. We write R̂D(f) to specify the dependency on
the dataset. We also write G := {f ∈ F , Ω(f) ≤ D}. Specifically, we have

sup
f∈G

R(f) − R̂D(f) − sup
f∈G

R(f) − R̂D̃(f)
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= sup
f∈G

R(f) − R̂D̃(f) + 1
n
�(ỹ(i), f(x̃(i))) − 1

n
�(y(i), f(x(i))) − sup

f∈G
R(f) − R̂D̃(f)

≤ sup
f∈G

1
n
�(ỹ(i), f(x̃(i))) − 1

n
�(y(i), f(x(i))),

and similarly

sup
f∈G

R̂D(f) −R(f) − sup
f∈G

R̂D̃(f) −R(f)≤ sup
f∈G

1
n
�(y(i), f(x(i))) − 1

n
�(ỹ(i), f(x̃(i)).

Combining both and taking the argmax functions f1 and f2, we obtain

sup
f∈G

R(f)−R̂D(f)− sup
f∈G

R(f)−R̂D̃(f)+ sup
f∈G

R̂D(f)−R(f)− sup
f∈G

R̂D̃(f)−R(f)

≤ 1
n
�(ỹ(i), f1(x̃(i)) − 1

n
�(y(i), f1(x(i))) + 1

n
�(y(i), f2(x(i))) − 1

n
�(ỹ(i), f2(x̃(i))

≤ G

n
(|(f1 − f2)(x(i)| + |(f1 − f2)(x̃(i))|)

≤ 4
n
G sup

f∈F,Ω(f)≤D,x∈Rd,‖x‖2≤R

|f(x)|

≤ 4
n
GD sup

x∈Rd,‖x‖2≤R

Ω∗((Hα(x))α)

≤ 4
n
GD sup

x∈Rd,‖x‖2≤R

√
1 +

∑
α∈(Nd)∗

c|α|
|α| Hα(x)2

≤ 4
n
GD

√
1 + eR2/2

(1 − ρ)d .

We can obtain the same exact bound for the opposite quantity of

sup
f∈G

R(f)−R̂D(f)− sup
f∈G

R(f)−R̂D̃(f)+ sup
f∈G

R̂D(f)−R(f)− sup
f∈G

R̂D̃(f)−R(f)

by using the same arguments. We use this bound for D = 2Ω(f∗). The result
follows by employing the proof of Theorem 4.1.

Appendix B: Technical details of the numerical experiments

Experiment 1 For MAVE and RegFeaL, the MARS final training used
the default parameters provided by the py-earth python package (https://
contrib.scikit-learn.org/py-earth/), except for the maximum degree,
which was taken as the estimated dimension for both methods. MAVE was
run using the provided CRAN package in R (https://cran.r-project.org/
web/packages/MAVE/index.html) and the default parameters.

The number of iterations niter was set to 5. For RegFeaL, the cross-validation
for ρ×μ was done over the grid defined by (0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8) for ρ
and (1000, 100, 10, 1, 0.1, 0.01, 0.001)/d((2−r)/r) for μ.

https://contrib.scikit-learn.org/py-earth/
https://contrib.scikit-learn.org/py-earth/
https://cran.r-project.org/web/packages/MAVE/index.html
https://cran.r-project.org/web/packages/MAVE/index.html
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The cross-validation for Kernel Ridge was done on parameter λ, with the
set of values (1000, 100, 10, 1, 0.1, 0.01, 0.001)/d((2−r)/r). The score of the noise
level was estimated by 1 − nσ2∑n

i=1(y
(i)
test−ȳtest)2

.

Experiment 2 For each value of n, we used cross-validation for the largest
value of m and then used the selected ρ and λ for all other values of m. The
cross-validation was done over the grid defined by (0.2, 0.4, 0.6, 0.8, 1.0) for ρ and
(100, 1, 0.1, 0.01, 0.001)/d((2−r)/r) for μ. The number of iterations niter was 3.

Experiment 3 The cross-validation for ρ× μ was done over the grid defined
by (0.2, 0.4, 0.6, 0.8, 1.0), for ρ and (100, 1, 0.1, 0.01, 0.001)/d((2−r)/r), for μ.
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