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Dataset (i.i.d.):

True regression function:

4

Learning Theory

Estimate using some method:

Risk:

For an estimator      , under some 
assumptions on the dataset and         ,              
with probability larger than                 :

Curse of dimensionality:

(Bellman, 1966)
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- Few        relevant projections of 
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Sparsity Assumptions

- Few relevant coordinates of 

Ex:

Ex:

Multi-Index Model
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Learning Theory
For an estimator      , under some 
assumptions on the dataset and         ,              
with probability larger than                 :

Curse of dimensionality:

(Li, 1991)
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Regularised Empirical Risk Minimisation

Parametric methods:
- Linear regression
- Lasso
- Neural networks

Nonparametric methods:
- Kernel methods
- Neural Networks?
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Well-specified model:

Variable selection by changing penalty:

(Vapnik, 1991)



Existing Methods for Multi-Index Models & Goals

Goals
● Use regularised empirical risk minimisation (RERM) for flexibility
● Make few assumptions on data distribution
● Make limited assumptions on 
● Obtain theoretical bounds with limited dependence on data dimension
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Multi-index model
Moment-based vs optimisation-based methods

Methods to compare against: MAVE & Neural networks

(Xia et al., 2002) (Bach, 2024)
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Function space:

Associated reproducing kernel:

Reproducing property:

Representer theorem:

Kernel ridge regression (KRR) (square loss):

Ex: 

: set of functions with square
 integrable derivatives of all order 

(Aronszajn, 1950)

Reproducing Kernel Hilbert Spaces (RKHS)



 Trace Norm Penalty on Sample 
Matrix of Gradients

KTNGrad

Chapter 2: unpublished work, extension of L. Rosasco et al.  
Nonparametric Sparsity and Regularisation. Journal of Machine 

Learning Research 14(52):1665−1714. 2013.

 



Multi-index model:

Main Idea Trace Norm Penalty on Sample Matrix of Gradients
KTNGrad
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Using the gradients

Choosing a RKHS         for                 

Trace norm penalty: convex relaxation of rank

Twice differentiable kernel (Gaussian)

Easy computation of gradients 

Sample Matrix of Gradients

(Dalalyan et al., 2007)



Algorithm

Adapted representer theorem
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Trace Norm Penalty on Sample Matrix of Gradients
KTNGrad

Cost of one iteration

Reweighted formulation

Convergence of optimisation
Convex, quick, proven

Solution: Nyström?

Obtaining the features

 Use               to estimate 

● the features (leading singular vectors) 
● the dimension (using the rank or a 

threshold)

Alternating minimisation in closed-form

(Drineas and Mahoney, 2005)(Bach et al., 2011)(Zhou, 2008)



When,                       for a well chosen sequence                    , with         the projection 
matrix associated to features      :        

Informal Theorem

Convergence of the expected risk (square loss)

In the well-specified setting (                    ), with bounded responses, there exists a 
constant          such that for any                      , with probability larger than       
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Trace Norm Penalty on Sample Matrix of Gradients
KTNGrad

Recovery of the hidden linear features  

(Rosasco et al., 2013)



Numerical Experiments
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Trace Norm Penalty on Sample Matrix of Gradients
KTNGrad

Figure 1: Performance for varying sample size, dimension 40, and a “sinus” dataset



Analysis
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Feature space recovery

Trace Norm Penalty on Sample Matrix of Gradients
KTNGrad

Inadequate function space

Gaussian RKHS and multi-index model are 
incompatible

  Next: focus on function space choice 
            try a Hilbert space with relevant basis!

High cost per iteration:
         but few iterations

Convergence guarantees

Not exponential in the dimension!

  But strong assumption       

  Gaussian kernel: derivatives of all   
  orders are square integrable

Computational complexity

Consistent estimation of features 
but difficulty with the dimension



Chapter 3:  B. Follain and F. Bach. Nonparametric Linear Feature 
Learning in Regression Through Regularisation. 

Electronic Journal of Statistics, 18(2):4075–4118. 2024

 Group Lasso Penalty on Hermite
Polynomials Decomposition

RegFeaL



Hermite polynomials

Main Idea Group Lasso Penalty on Hermite Polynomials Decomposition
RegFeaL
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Orthonormal basis of 

does not depend on 

(Hermite, 1864)



Main Idea Group Lasso Penalty on Hermite Polynomials Decomposition
RegFeaL
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Algorithm

Complicated sampling scheme of                  
      using     , real limitation

(less) High cost per iteration

 Use               to estimate 

● the features (leading 
singular vectors) 

● the dimension (using a 
threshold)

Group Lasso Penalty on Hermite Polynomials Decomposition
RegFeaL

Computation

Alternating minimisation in closed-form (or descent)

● For      : formula using eigenpairs of 
● For      : solving kernel ridge regression with

Obtaining the featuresReweighted formulation (again!)

(Bach et al., 2011)



19

Informal Theorem Group Lasso Penalty on Hermite Polynomials Decomposition
RegFeaL

Convergence of the expected risk

In the well-specified setting (                       ), with bounded inputs (                   ), a convex                 

     -Lipschitz loss, the optimal choice of      and for                ,                    , then for any  

                     , with probability larger than       

Proof technique

Gaussian complexity

(Bartlett and Mendelson, 2002)
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Numerical Experiments Group Lasso Penalty on Hermite Polynomials Decomposition
RegFeaL

Figure 2: Performance for varying sample size, dimension 40, and a “polynomial” dataset
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Numerical Experiments Group Lasso Penalty on Hermite Polynomials Decomposition
RegFeaL

Figure 3: Performance for varying sample size, dimension 40, and a “sinus” dataset
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Next: use inspiration from neural networks!

Function space limitations

The space is actually too big!

Infinite basis complicates matters…

Function space limitations

Analysis Group Lasso Penalty on Hermite Polynomials Decomposition
RegFeaL

Use of Hermite polynomials

Well-suited basis for feature learning

Advantage compared to previous 
RKHS 

Use of Hermite polynomials

Computational complexity

No strong assumptions on       (            large)

But exponential dependency in 

Infinite basis leads to awkward 
sampling to approximate kernel at 

each step

Generalisation guarantees



Chapter 4:  B. Follain and F. Bach. Enhanced Feature Learning via 
Regularisation: Integrating Neural Networks and Kernel Methods. 

2024 (under review by JMLR).

Integrating Neural Networks
And Kernel Methods

BKerNN



Main Idea
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Integrating Neural Networks and Kernel Methods
BKerNN

Feedforward neural network (ReLU) Neural network/kernel method fusion

Infinite-width (mean-field) limit

RKHS and Brownian kernel

(Kurkova and Sanguineti, 2001) More rigorous definition in manuscript



Main Idea
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Integrating Neural Networks and Kernel Methods
BKerNN

Figure 4: Comparison to neural networks on 1D examples



Main Idea
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Integrating Neural Networks and Kernel Methods
BKerNN

In practice: use particles Other penalties

Reformulation

Replace by                                              for        
variable selection or feature learning

Positive 1-homogeneity of the Brownian kernel
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Algorithm Integrating Neural Networks and Kernel Methods
BKerNN

Step 1: fixing the weights/kernel

Kernel ridge regression problem No closed-form, proximal gradient descent

Step 2: learning the weights

Solution: Nyström?

(Drineas and Mahoney, 2005) (Chizat and Bach, 2022)



No formal proof (differentiability issues)

But: insights from mean-field theory

& well-behaved in practice
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Algorithm

 Use                         to estimate 

● the features (leading singular 
vectors) 

● the dimension (using a 
threshold)

Integrating Neural Networks and Kernel Methods
BKerNN

Step 1: fixing the weights/kernel

Obtaining the features

Kernel ridge regression problem No closed-form, proximal gradient descent

Step 2: learning the weights

Solution: Nyström?

Optimisation behaviour

(Drineas and Mahoney, 2005) (Chizat and Bach, 2022)
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Informal Theorem Integrating Neural Networks and Kernel Methods
BKerNN

Convergence of the expected risk

In the well-specified setting (                       ), with                      being  subgaussian with

 variance proxy     , a convex       -Lipschitz loss, the optimal choice of     , with               

 universal constants, then for any                     , with probability larger than       

Bound on Gaussian complexity

(Bartlett and Mendelson, 2002)
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Numerical Experiments Integrating Neural Networks and Kernel Methods
BKerNN

Figure 5: Performance comparison across varying sample sizes and dimensions



Numerical Experiments Integrating Neural Networks and Kernel Methods
BKerNN
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Figure 6: Performance comparison across real datasets
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Analysis Integrating Neural Networks and Kernel Methods
BKerNN

Use of Hermite polynomials

Well-suited basis for feature learning

Advantage compared to previous 
RKHS 

Function space analysis

Good performance and easy to train

Reasonable computational cost

Generalisation guarantees

Yes
Neural networks

(BKerNN)

Adaptivity in misspecified settings

In practice

Lightest assumption on data

No exponential dependency on ee  

Light assumption on      (          large)   

No

Kernel methods

Linear features encoded in design of 
function space 

Yet still large function space (as seen by 
using Fourier transform analysis)

(Bach, 2024)



Conclusion



Goals and Achievements

Goals
● Use regularised empirical risk minimisation (RERM) for flexibility
● Make few assumptions on data distribution
● Limit functional assumptions on 
● Obtain theoretical bounds with limited dependence on data dimension
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Multi-Index Model Careful design of appropriate function space and penalty

Regular RKHS
Hermite polynomials

Hilbert space

Neural net/kernel 
fusion



Achievements
● Sparsity-inducing penalties: trace norm regularisation
● Computable methods: representer theorem, alternating minimisation
● Progress on quest for adapted function space
● Last method has limited assumptions and no exponential dependency!

Goals and Achievements
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Multi-Index Model Careful design of appropriate function space and penalty

Regular RKHS
Hermite polynomials

Hilbert space

Neural net/kernel 
fusion
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Bypass high-dimensional issues while limiting other assumptions
by 

learning linear features!

No free lunch theorem
Some assumptions must be made: few relevant features

Take-Home Message
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Improving computation of BKerNN
Explicit adaptivity results for BKerNN

Extension to other function estimation problems
beyond i.i.d. covariates/response pairs

Perspectives
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Exploration of non-linear feature learning
to capture more complex patterns



Thank you!



Step 2: Use     -covering of               in          norm

Extra: Bound on Gaussian Complexity for BKerNN
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Option 1: Dimension-dependent bound

Step 1: Optimise explicitly for



Step 2: Use covering of 1-Lipschitz set of functions in             norm

Extra: Bound on Gaussian Complexity for BKerNN
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Option 2: Dimension-independent bound

Step 1: Use Lipschitz approximation for

Step 3: Use Lemma based on Slepian’s lemma and Bartlett and Mendelson (2002)


