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Résumé

Nous considérons le problème de l’apprentissage supervisé lorsqu’il existe des structures
de données cachées, en nous concentrant sur les cas où quelques caractéristiques linéaires
pertinentes expliquent la relation entre la réponse et les covariables, comme dans le modèle
“multi-index”. Notre objectif est de développer des méthodes qui exploitent ces structures
cachées pour améliorer l’apprentissage. De nombreuses approches existantes reposent sur
des hypothèses fortes concernant la génération de données et se heurtent à la malédic-
tion de la dimensionnalité, présentant souvent une dépendance exponentielle en la dimen-
sion des données. Nous explorons les modèles “multi-index” en utilisant la minimisation
du risque empirique régularisé (ERM), car ce cadre flexible est applicable à tout prob-
lème pour lequel un risque peut être défini. Tout au long de cette thèse, nous explorons
trois méthodes innovantes pour simultanément apprendre les caractéristiques et estimer
la fonction de prédiction dans un contexte non-paramétrique. Chaque méthode intègre
des éléments des espaces de Hilbert à noyau reproduisant (RKHS), contient des pénal-
ités d’apprentissage des caractéristiques qui sont adaptables à la sélection de variables,
utilise des procédures d’optimisation basées sur la repondération pour un calcul efficace
et s’appuie sur des hypothèses limitées sur le mécanisme de génération des données. Nous
avons veillé à la facilité d’utilisation du code développé et à la reproductibilité des ex-
périences. La première méthode, KTNGrad, considère l’ERM dans un RKHS avec une
pénalité de norme nucléaire sur la matrice empirique des gradients. L’analyse théorique
montre que KTNGrad a des taux de convergence pour le risque attendu dans les con-
textes bien spécifiés qui ne dépendent pas exponentiellement de la dimension, tout en
estimant l’espace des caractéristiques pertinentes d’une manière sûre. La deuxième méth-
ode, RegFeaL, exploite les propriétés d’orthogonalité et d’invariance par rotation des
polynômes de Hermite. Cette méthode fait pivoter les données de manière itérative pour
les aligner avec les caractériques. Le risque attendu converge vers le risque minimal avec
des taux explicites, sans hypothèses fortes sur la véritable fonction de régression. Enfin, la
troisième méthode, BKerNN, introduit un nouveau modèle qui combine les méthodes à
noyaux et les réseaux de neurones. Cette méthode optimise les poids de la première couche
par descente de gradient tout en ajustant explicitement la non-linéarité et les poids de la
deuxième couche. L’optimisation tire parti de l’homogénéité positive du noyau Brownien,
et l’analyse de la complexité de Rademacher montre que le risque attendu de BKerNN
atteint des taux de convergence favorables qui sont indépendants de la dimension, sans
hypothèses fortes sur la véritable fonction de régression ou sur les données.

Mots clés : apprentissage de caractéristiques, noyau reproduisant, minimisation du risque
empirique régularisé, parcimonie, apprentissage supervisé, réseaux de neurones
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Abstract

We tackle the challenge of supervised learning with hidden data structures, focusing on
cases where a few relevant linear features explain the relationship between response and
covariates, as in the multi-index model. We aim to develop methods that leverage these
hidden structures to improve learning. Many existing approaches rely on strong assump-
tions about data generation and struggle with the curse of dimensionality, often exhibiting
exponential dependency on data dimension. We explore multi-index models through regu-
larised empirical risk minimisation (ERM), as this flexible framework is applicable to any
problem where a risk can be defined. Throughout this thesis, we explore three innova-
tive methods for joint feature learning and function estimation in nonparametric learning.
Each method integrates elements from reproducing kernel Hilbert spaces (RKHS), contains
sparsity-inducing penalties for feature learning which are adaptable to the variable selec-
tion setting, uses optimisation procedures based on reweighting for efficient computation
and relies on limited assumptions on the data-generating mechanism. We ensured the us-
ability of the developed code and the reproducibility of the experiments. The first method,
KTNGrad, considers ERM within an RKHS, augmented by a trace norm penalty on the
sample matrix of gradients. Theoretical analysis shows that KTNGrad achieves conver-
gence rates that do not depend exponentially on the dimension for the expected risk in
well-specified settings while recovering the underlying feature space in a safe-filter manner.
The second method, RegFeaL, leverages Hermite polynomials’ orthogonality and rota-
tion invariance properties. This method iteratively rotates the data to align with leading
directions. The expected risk converges to the minimal risk with explicit rates without
strong assumptions on the true regression function. Finally, the third method, BKerNN,
introduces a novel framework that combines kernel methods and neural networks. This
method optimises the first layer’s weights via gradient descent while explicitly adjusting
the non-linearity and weights of the second layer. The optimisation leverages the posi-
tive homogeneity of the Brownian kernel, and Rademacher complexity analysis shows that
BKerNN achieves favourable convergence rates that are dimension-independent without
strong assumptions on the true regression function or the data.

Keywords : feature learning, reproducing kernel, regularised empirical risk minimisation,
sparsity, supervised learning, neural networks
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CHAPTER 1

General Introduction

The aim of this chapter is to establish the theoretical framework and motivation
for this thesis, situating our work within the broader context of current research.
We begin with a review of key concepts in supervised learning and learning
theory, with a particular emphasis on finite-sample generalisation guarantees,
which are essential for evaluating the performance of the proposed algorithms.
The chapter then explores the challenges posed by high-dimensional data, par-
ticularly focusing on the use of sparsity assumptions to manage and reduce the
complexity of learning problems. Subsequently, we turn our attention to the
multi-index model, providing a comprehensive review of existing methodologies
in this domain. The chapter concludes with a summary and analysis of the
three main contributions of this thesis.
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Chapter 1. General Introduction

1 Background
In an era characterised by the exponential growth of data and its increasing complexity,
the ability to extract meaningful insights has become critical. High-dimensional data,
which is prevalent across various fields such as genomics, finance, and image processing,
presents unique challenges that often overwhelm traditional learning methods. The curse
of dimensionality, a phenomenon where the volume of the feature space grows exponentially
with the number of dimensions, often impedes the effectiveness of these methods. This
can lead to models that are either overly complex and prone to overfitting or too simplistic
to accurately capture the underlying structure of the data.

This thesis, titled Betting on Sparsity: Leveraging Hidden Linear Features through
Regularisation for Supervised Learning, investigates innovative methods that harness the
power of sparsity and regularisation to enhance the performance of learning algorithms. By
focusing on sparsity-driven techniques, we aim to exploit hidden linear structures within
high-dimensional data, such as those found in the multi-index model, ultimately leading to
more effective and interpretable models. Regularisation techniques, such as the LASSO,
play a critical role in this context by promoting sparsity in the model parameters, thereby
mitigating the risks associated with high-dimensional data. While the LASSO is for linear
prediction, we tackle non-linear settings and, more specifically, non-parametric prediction.
We also consider variable selection as a by-product of the feature learning framework.

The introduction begins with a review of relevant concepts in supervised learning,
followed by a discussion of the challenges posed by high-dimensional data and the moti-
vation for adopting sparsity-based approaches. We then examine existing methods in the
literature, setting the stage for the novel contributions presented in this work, which are
summarised in the final section of the introduction.

1.1 Supervised Learning Methods

Supervised learning is a fundamental paradigm in machine learning where the objec-
tive is to learn a function that maps inputs to outputs using training data. Given a
dataset (xi, yi)i∈[n], where [n] := {1, . . . , n} and each xi ∈ X ⊂ Rd represents an in-
put vector and yi ∈ Y ⊂ R is the corresponding output or label, the goal is to find a
function f : X → Y that accurately predicts the output y for a new input x.

Supervised learning methods can be broadly categorised into parametric and non-
parametric approaches, both of which rely heavily on the principle of empirical risk min-
imisation (ERM) [Vapnik, 1991].

Empirical risk minimisation and regularisation. In supervised learning, the ul-
timate objective can be formulated as finding a function f that minimises the expected
risk R(f), defined as the expected value of the loss function over the joint distribution of
the data

R(f) = E(X,Y ) (ℓ(Y, f(X))) ,

where ℓ : Y × Y → R+ is a loss function that quantifies the discrepancy between the
predicted value ŷ = f(x) and the true label y. However, since the joint distribution is
generally unknown, direct minimisation of the expected risk is infeasible.

Instead, the expected risk is approximated by the empirical risk, which is the average

2



1. Background

loss over the training dataset (xi, yi)i∈[n]

R̂(f) = 1
n

n∑
i=1

ℓ(yi, f(xi)).

The principle of empirical risk minimisation (ERM) is to find a function f̂ that minimises
this empirical risk:

f̂ = arg min
f∈F

R̂(f),

where F represents the hypothesis space, i.e., the set of candidate functions that the
learning algorithm can explore [Vapnik, 2013].

ERM provides a framework for approximating the best predictor within a given func-
tion class, but it does not guarantee optimal performance on unseen data, leading to a
generalisation gap, the difference between the empirical risk and the true risk. The choice
of hypothesis space F is critical: a complex space may lead to overfitting, while a simpler
one might result in underfitting. Additionally, the choice of loss function ℓ has a significant
impact on the optimisation process, sensitivity to outliers, and the interpretability of the
results.

Regularisation techniques are essential in mitigating the generalisation gap by pe-
nalising model complexity, thereby preventing overfitting while ensuring that the model
remains sufficiently flexible to capture the underlying data patterns. In the context of
empirical risk minimisation, regularisation is incorporated directly into the optimisation
problem, leading to the formulation of regularised empirical risk minimisation (RERM).
The RERM approach modifies the original ERM objective by adding a regularisation
term to the empirical risk, which penalises the complexity of the function f . This can be
expressed as

f̂λ = arg min
f∈F

R̂(f) + λΩ(f),

where λ > 0 is a regularisation parameter that controls the trade-off between the empirical
risk and the regularisation term, and Ω(f) is the regularisation penalty that typically
enforces smoothness or sparsity in the function f .

The choice of λ is pivotal: an excessively large λ can impose too stringent a constraint
on the model, leading to underfitting, whereas a very small λ might fail to adequately
penalise model complexity, thereby increasing the risk of overfitting. To address this,
methods such as cross-validation are frequently employed to determine the optimal value
of λ [Arlot and Celisse, 2010]. Regularisation proves to be particularly powerful in high-
dimensional settings, where the potential for overfitting is amplified due to the vast number
of parameters relative to the available data [Bishop, 2006].

(Regularised) empirical risk minimisation is a powerful framework as it can be applied
to a large variety of problems beyond typical i.i.d covariates/response pairs as long as a
risk can be defined.

Parametric methods. Parametric methods assume that the function f can be param-
eterised by a finite set of parameters θ ∈ Rp, with f typically written as f(x) = f(x; θ),
with x ∈ Rd. The task is to estimate the parameters θ that minimise the empirical risk
[Bishop, 2006].

A classic example of a parametric method is linear regression, where the model is
defined as

f(x; θ) = θ⊤x,
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Chapter 1. General Introduction

and the parameters θ are estimated by minimising the empirical risk with respect to the
square loss

θ̂ = arg min
θ∈Rd

1
n

n∑
i=1

(yi − θ⊤xi)2.

It is common to regularise by the ℓ2 norm of θ, yielding ridge regression, which penalises
large weights. This encourages the model to distribute the weight more evenly, reducing
the risk of overfitting by preventing any single feature from having an excessively large
influence on the predictions [Gruber, 1998].

Another powerful class of parametric methods includes neural networks, particularly
feedforward networks, which consist of layers of linear transformations followed by non-
linear activation functions [Goodfellow et al., 2016]. A one-hidden-layer neural network
(also known as a single-layer perceptron) can be represented as

f(x; θ) =
m∑

j=1
ηjσ(w⊤

j x + bj),

where wj ∈ Rd and bj ∈ R are parameters for the j-th neuron in the hidden layer, ηj ∈ R
are the weights for the output layer, σ is a non-linear activation function (e.g., ReLU for
rectified linear unit, σ(z) = max(0, z)), and m is the number of neurons in the hidden
layer.

The parameters θ = (wj , bj , ηj)m
j=1 are typically learned through back-propagation and

stochastic gradient descent (SGD), where the empirical risk is minimised iteratively by
updating the parameters in the direction of the negative gradient of the loss function with
respect to the parameters [Rumelhart et al., 1986].

Neural networks have demonstrated exceptional success in capturing complex, non-
linear relationships in data, as they are capable of approximating any continuous func-
tion given a sufficient number of neurons and layers (as per the universal approximation
theorem) [Hornik et al., 1989]. However, this expressiveness often comes at the cost of
interpretability and computational efficiency. Moreover, training neural networks requires
large amounts of data to avoid overfitting, and tuning hyperparameters such as the learn-
ing rate, number of neurons, and network architecture can be challenging. Regularisation
techniques and careful architecture design are crucial for controlling model complexity and
maintaining generalisation to unseen data [Krogh and Hertz, 1991].

Non-parametric methods. Non-parametric methods differ from parametric methods
in that they do not assume a fixed form for the function f . Instead, they allow the model
complexity to grow with the size of the training data, enabling these methods to adapt to
a broader range of functions [Hastie et al., 2001]. This flexibility makes non-parametric
methods particularly useful when the underlying relationship between x and y is highly
non-linear or unknown.

A classic example of a non-parametric method is the k-nearest neighbours (k-NN)
algorithm, which, for a given input x, predicts the output by averaging the outputs of
the k closest points in the training set [Cover and Hart, 1967]. While simple and effective
for small datasets, k-NN suffers from the curse of dimensionality, where the concept of
“closeness” becomes less meaningful as the number of dimensions increases.

A more sophisticated and widely used non-parametric approach, which plays a central
role in this thesis, involves reproducing kernel Hilbert spaces (RKHS) [Aronszajn, 1950].
An RKHS is a Hilbert space of functions where the evaluation of a function at any point
can be represented as an inner product with a fixed function known as the kernel. The
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1. Background

key feature of an RKHS is the reproducing property

f(x) = ⟨f, kx⟩H,

where kx = k(x, ·) with k the reproducing kernel associated with the space H, and ⟨·, ·⟩H
denotes the inner product in H. Popular choices for the kernel function include the
Gaussian (RBF) kernel, k(x, x′) = exp(−∥x− x′∥2/2).

The strength of the RKHS framework lies in the representer theorem [Aronszajn,
1950, Schölkopf and Smola, 2002], which elegantly simplifies the solution to a regularised
risk minimisation problem. According to this theorem, any solution to such a problem
can be represented as a finite linear combination of kernel functions evaluated at the
training points. In practical terms, this implies that instead of searching over an infinite-
dimensional space of functions, the optimisation can be reduced to finding the optimal
coefficients α ∈ Rn in the expression f̂(x) = ∑n

i=1 αikxi . This idea can even be extended
to more general settings with convex regularisation [Boyer et al., 2019]. The reduction
induced by the representer theorem not only makes the computation of the estimator more
tractable but also leads to an efficient implementation of the kernel ridge regression (KRR)
problem, which uses the features induced by k instead of the original features as in ridge
regression

f̂ = arg min
f∈H

R̂(f) + λ∥f∥2H,

where λ > 0 is the regularisation parameter. This method is inherently non-parametric, as
the complexity of the model, determined by the number of effective parameters, naturally
increases with the size of the dataset [Wahba, 1990].

Neural networks can also be interpreted as non-parametric methods, as the number of
neurons in the hidden layer, and consequently the number of parameters, can be scaled
with the sample size. In the infinite-width limit, where the number of neurons is considered
infinite, which consists in replacing the sum of the output layer with an integral, the
method becomes explicitly non-parametric.

1.2 Learning Theory

Learning theory provides a formal framework for evaluating the generalisation capabilities
of supervised learning algorithms, therefore assessing their overall performance. The key
question is how well a model trained on a finite dataset can predict outcomes on unseen
data, typically quantified by the generalisation error, i.e., the difference between the ex-
pected risk (true risk) and the minimal expected risk achievable by any function within
the hypothesis class. To analyse this error, researchers often examine the generalisation
gap, the discrepancy between empirical and expected risk, using tools such as Rademacher
complexity.

Generalisation bounds. Generalisation bounds provide high-probability guarantees on
a model’s performance on unseen data. This can be done by quantifying the generalisation
gap, i.e., the difference between the expected risk and the empirical risk. A common form
of these bounds is then given by∣∣∣R(f)− R̂(f)

∣∣∣ ≤ ϵ(n, d, δ) with probability ≥ 1− δ,

where R(f) denotes the expected risk, R̂(f) represents the empirical risk, and ϵ(n, d, δ)
depends on the sample size n, the dimensionality d, and the confidence level 1− δ.
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Another important type of generalisation bound focuses on providing high-probability
guarantees for the difference between the expected risk of an estimator f̂ and the minimal
expected risk achievable within the hypothesis class F , expressed as R(f̂)− inff∈F R(f).
These bounds are particularly valuable because they offer insights into how closely the
learned model approximates the best possible model within the given class, thus directly
linking the estimator’s performance to the inherent limitations of the hypothesis space.

The strength of both of these types of bounds lies in their explicit dependency on
the key parameters of the learning problem, such as the dimensionality d and the sample
size n. Unlike asymptotic convergence results, which, for example, assure that the empir-
ical risk converges to the expected risk only as the sample size approaches infinity, these
bounds offer concrete, quantitative insights into how the generalisation error behaves in
finite-sample settings. This detailed understanding helps elucidate the interplay between
model complexity, data dimensionality, and sample size, thereby enabling a more informed
analysis of how these factors influence the model’s performance on unseen data in practical
cases [Reid, 2010].

Rademacher complexity. Rademacher complexity is a powerful tool for deriving gen-
eralisation bounds by measuring the capacity of a function class G to fit random noise
or binary labels, thereby indicating its potential to overfit. Given a dataset of covariates
only (xi)i∈[n], the empirical Rademacher complexity is defined as the following expectation

R̂n(G) = Eε

(
sup
f∈G

1
n

n∑
i=1

εif(xi)
)

,

where εi are independent Rademacher random variables taking values in {−1, +1} with
equal probability [Bartlett and Mendelson, 2002]. This complexity can also be extended
to include the dataset and the loss function. For the dataset, the Rademacher complex-
ity Rn(G) is defined as the expectation over the dataset of R̂n(G). For the loss, the
presented form can be retrieved via the contraction principle for Lipschitz-continuous
losses [Bach, 2024, Section 4.5.2], see Geoffrey et al. [2020] for a study of high-dimensional
learning with convex and Lipschitz losses using extensions of Rademacher complexities.

The Rademacher complexity of G is crucial for deriving data-dependent generalisation
bounds that adapt to the hypothesis class’s complexity relative to the data. As an example,
for binary error functions, and for any function class G and δ ∈ (0, 1), with probability at
least 1− δ, the following bound holds

sup
f∈G
R(f)− R̂(f) ≤ 2Rn(G) + 4

√
2 log(4/δ)

n
,

as shown by Shalev-Shwartz and Ben-David [2014, Chapter 26], see also Boucheron et al.
[2005]. This result highlights that the generalisation gap depends both on the empirical
risk and the complexity of the considered function class.

Curse of dimensionality. One of the major challenges in supervised learning is dealing
with high-dimensional data. As the number of features or dimensions increases, the data
points become sparse in the feature space, making it increasingly difficult for learning
algorithms to generalise from training data to unseen examples. This phenomenon affects
various supervised learning methods differently and is known as the curse of dimensionality
[Bellman, 1966, Giraud, 2014].
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The curse is evident in the dependency of generalisation bounds on the dimensionality,
where, for instance, the rates may take the form O(n−1/d). This implies an exponential
growth in the required number of samples as the dimension increases in order to maintain
comparable performance. This is typically the case of k-nearest neighbours and other
local-averaging methods [Bach, 2024, Chapter 6]. In practice, this means that some meth-
ods fail to perform effectively in high-dimensional settings, in addition to the increased
computational complexity they entail.

Well-specified models and adaptivity. In well-specified models, it is assumed that
the true underlying prediction function, f∗, which minimises the expected risk over all
possible functions, is contained within the hypothesis space F . Under this assumption,
methods like kernel ridge regression can achieve convergence rates that are independent of
the data dimension, effectively circumventing the curse of dimensionality. However, this
benefit relies on the strong assumption that f∗ is indeed within F . For instance, when
using a Sobolev kernel, this assumption implies that the function must be highly regular,
with square-integrable derivatives up to at least the order d/2 [Bach, 2024, Chapter 7].

In contrast, when dealing with misspecified models where f∗ does not belong to F , no
function within the hypothesis space can attain the true minimal expected risk. Instead,
the learning algorithm converges to the best possible approximation within F , but an
unavoidable gap known as the approximation error persists between the achievable risk
and the true minimal risk. This error reflects the inherent limitations of the chosen
hypothesis class and cannot be closed by merely increasing the sample size or adjusting
regularisation parameters [Bach, 2024, Section 4.3].

Nonetheless, even in the face of misspecification, certain methods can exhibit adaptiv-
ity, meaning that the rates improve depending on properties of f∗. For example, kernel
ridge regression is adaptive to intermediate regularity of the underlying function f∗ [Bach,
2024, Chapter 7], while neural networks can even be adaptive to the presence of hidden
linear features, with rates depending on the number of relevant linear features instead of
the original dimension of the data [Bach, 2024, Chapter 9].

1.3 Sparsity Assumptions

In high-dimensional settings, sparsity assumptions are practical because not all the infor-
mation contained in the covariates is likely relevant to the prediction task. By focusing on
a small subset of key variables or linear features, sparsity reduces the problem’s dimen-
sionality, preventing overfitting, enhancing computational efficiency, and improving the
model’s generalisation ability while identifying important predictors [Hastie et al., 2015].

Dependency on a few variables. It is often reasonable to assume that the response
variable depends on only a small subset of the covariates. Within the linear regression
framework, this assumption translates to the parameter vector θ having many zero entries,
meaning that ∥θ∥0 is small, where ∥θ∥0 counts the number of non-zero elements in θ.

However, directly minimising the ∥θ∥0 norm is computationally infeasible due to its
combinatorial nature, making the optimisation problem NP-hard [Natarajan, 1995]. To
circumvent this, a common approach is to employ a convex relaxation of the ∥θ∥0 norm
by using the ℓ1 norm ∥θ∥1 = ∑d

a=1 |θa| instead. This relaxation leads to the formulation
of the LASSO (Least Absolute Shrinkage and Selection Operator) [Tibshirani, 1996]

θ̂ = arg min
θ∈Rd

(
1
n

n∑
i=1

(yi − θ⊤xi)2 + λ∥θ∥1

)
.
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The LASSO is particularly effective in high-dimensional settings where the number
of variables d is large, as it simultaneously performs parameter estimation and variable
selection. By introducing an ℓ1-norm penalty, the LASSO encourages many of the coef-
ficients to shrink towards zero, effectively excluding irrelevant features from the model,
which improves both prediction performance and interpretability. However, the model
remains inherently linear, which limits its ability to capture more complex patterns in the
data.

Similarly, in the context of high-dimensional changepoint estimation with heteroge-
neous missing data, one can assume that the changepoint only occurs in a subset of
the coordinates. This sparsity assumption is incorporated into the model through an ℓ1
penalty in the optimisation problem, as demonstrated in Follain et al. [2022].

The multi-index model. The multi-index model takes sparsity one step further by
assuming in the context of supervised learning that the relationship between the response
and covariates can be explained by a limited number of linear combinations of the input
variables. Formally, a multi-index model is given by

∀x ∈ X , f∗(x) = g∗(P ⊤x
)

where f∗ is the true regression function, P ∈ Rd×s is a matrix with s < d (typically s≪ d)
where s is the number of relevant linear features and g∗ is an unknown potentially non-
linear link function that maps these linear combinations to the response variable. This
model, formally presented by Li [1991], provides a flexible framework for capturing complex
relationships in data while maintaining a focus on a reduced, interpretable set of features.
The estimation of multi-index models can be challenging due to the non-linearity and non-
parametric nature of the link function g∗, as well as the difficulty of potentially estimating
the number of relevant features s.

2 Existing Methods for the Multi-Index Model
This thesis focuses on the exploitation of hidden linear features within the context of
supervised learning, as in the multi-index model. To lay a solid groundwork for the contri-
butions presented here, we first review the extensive body of literature that has emerged
on the topic. It is important to note that the objectives of the methods reviewed here may
differ from the ones we propose. While the existing methods primarily focus on recover-
ing the subspace spanned by the matrix P and sometimes estimating its dimension, our
approach is more comprehensive, aiming to simultaneously estimate both the function f∗

and the matrix P , as well as its dimension, with a theoretical emphasis on the theoretical
behaviour of the expected risk. Broadly speaking, the existing methods for estimating
multi-index models can be classified into two main categories: moment-based methods
and optimisation-based methods.

2.1 Moment-Based Methods

One of the foundational approaches to estimating multi-index models is rooted in moment-
based methods, where specific moments of the data are exploited to eliminate the influence
of the unknown link function g∗. The seminal work by Brillinger [2012] in the context of
a single linear feature, also known as the single-index model, introduced the idea that for
centred Gaussian data with an identity covariance matrix, the expectation E(Y X) is pro-
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portional to the feature vector. This insight laid the groundwork for further developments
in the estimation of multi-index models.

To extend these ideas beyond Gaussian data, Stoker [1986] proposed the use of the
score function, defined as the gradient of the log-likelihood with respect to the parameters
in a parametric family of distributions, in place of the covariate vector X in the expec-
tation. This innovation broadened the applicability of the method to distributions with
a differentiable log density. However, a significant challenge remains: the score function
must be known or estimated, which is itself a non-trivial task. Moreover, this approach
does not generalise from the single-index to the multi-index model.

Sliced Inverse Regression (SIR), introduced by Li [1991], represents a key advancement
in extending moment-based methods to multi-index models. SIR inverts the regression
problem, investigating how the predictors X relate to the response Y rather than the
reverse. By dividing the response variable into slices and examining the conditional ex-
pectation of the predictors within each slice, SIR identifies the directions that explain the
most variation in these expectations as estimates of the matrix P . However, SIR relies
heavily on the assumption of Gaussian-distributed data, and while it can be extended to
elliptically-contoured distribution (where probability density contours are ellipsoids, which
is also the case of Gaussian data), this remains a strong limitation that restricts its appli-
cability. Furthermore, its consistency is guaranteed only when the ratio of the dimension
to the sample size tends to zero, which can be a significant limitation in high-dimensional
settings [Qian Lin and Liu, 2019].

Principal Hessian directions (PHD), introduced by Li [1992], is another significant
moment-based approach that extends beyond single-index models. Unlike SIR, PHD
utilises higher-order moments, such as E(Y XX⊤), to uncover the linear features. By
analysing the Hessian matrix of the predictors relative to the response, PHD can cap-
ture more complex, non-linear relationships. However, this method is computationally
demanding due to the need for second derivative calculations and assumes that the co-
variates follow an elliptically contoured distribution, which is also restrictive.

There have been interesting extensions to these methods, for instance, Babichev and
Bach [2018] extended SIR by integrating score functions, thereby enabling its use for more
general distributions. However, this approach still requires prior knowledge or estimation
of the score function, which introduces additional complexity. The problem of learning
the score function is a non-parametric one and is subject to the curse of dimensionality.
To address this, Babichev and Bach [2018] proposed a method that learns both the score
function and the feature space simultaneously using trace norm regularisation, though the
method lacks theoretical guarantees on its performance. Further advancements include
Qian Lin and Liu [2019], which combined the SIR approach with LASSO-type regulari-
sation to address the consistency issue in high-dimensional settings but still only considers
elliptically-contoured distributions.

These methods primarily aim to identify the hidden linear features, while the link
function can then be estimated in a subsequent step using conventional non-parametric
techniques on the data projected onto the estimated feature space. While these approaches
offer valuable insights and tools for handling multi-index models, their reliance on strong
assumptions about the underlying data-generating process can significantly limit their
practical applicability. Additionally, they focus exclusively on additive noise models, which
effectively restricts their scope to scenarios where the square loss is used in the expected
risk minimisation framework discussed earlier. These limitations underscore the need for
more flexible and robust methods that can adapt to a broader range of data distributions
and loss functions.
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2.2 Optimisation-Based Methods

Optimisation-based methods represent a significant line of research in estimating multi-
index models. Unlike moment-based methods, which focus on extracting linear features
through statistical moments, optimisation-based approaches directly seek to optimise an
objective function that captures the structure of the multi-index model.

One of the most significant contributions in this area is the minimum average vari-
ance estimation (MAVE) method, introduced by Xia et al. [2002]. MAVE tackles the
estimation of the feature space in multi-index models by recasting it as an optimisation
problem, which, while intractable in its original form, is estimated through an efficient ap-
proximation. A notable feature of MAVE is its cross-validation technique for determining
the dimension of the feature space, which has been proven to converge in probability.
Although the conditions imposed by MAVE on the data-generating mechanism are less
restrictive than those required by moments-based methods, they are more technically intri-
cate. However, like many other methods, MAVE is subject to the curse of dimensionality,
with the rate of estimation deteriorating exponentially as the dimensionality of the data
increases. Importantly, MAVE does not focus on estimating the link function and im-
plicitly assumes a squared loss framework, although it is versatile enough to handle time
series data as well.

The structural adaptation via maximum minimisation (SAMM) method, introduced
by Dalalyan et al. [2008], is another optimisation-based approach designed to learn the fea-
ture space in multi-index models with mild technical assumptions on the data distribution.
Unlike traditional methods that typically sum discrepancies across data points, SAMM
focuses on minimising the maximum discrepancy between observed data and model predic-
tions. Additionally, SAMM exploits gradient information to enhance the accuracy of the
feature space estimation, a concept similarly employed by Xia et al. [2002] in the context
of the OPG method, which is distinct from MAVE. One of SAMM’s key strengths is its
ability to achieve

√
n-consistency up to a logarithmic factor when the structural dimension

is small (s ≤ 4).
The SEAS (subspace estimation with automatic dimension and variable selection)

method by Jing Zeng and Zhang [2024] effectively bypasses the curse of dimensionality
by simultaneously accounting for both a small number of hidden linear features and a
limited set of relevant variables. This is achieved through the application of nuclear norm
and group sparsity penalties. However, the method assumes the linearity condition, which
holds, for instance, when the data distribution is elliptically contoured.

The application of reproducing kernel Hilbert spaces (RKHS) to multi-index models
has been explored by Fukumizu et al. [2009] and Fukumizu et al. [2004]. These methods
approach dimensionality reduction by identifying a low-dimensional subspace of the input
space that retains the statistical relationship between the input X and the output Y with-
out requiring assumptions about the marginal distribution of X or a parametric model for
the conditional distribution of Y . More recently, neural networks have also been applied
to this problem, as demonstrated by Mousavi-Hosseini et al. [2024] and Bietti et al. [2022]
(for the single-index model), who both focused on the continuous limit of the optimisation
process. Furthermore, Bach [2024, Chapter 9] has shown that one-hidden-layer neural net-
works of infinite width with ReLU activation are adaptive to hidden linear features. Unlike
earlier methods, these neural network approaches simultaneously learn both the feature
space and the prediction function, a key difference from the other presented methods.
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2.3 Limitations of Existing Methods and Goals

As we have seen, the estimation of multi-index models has been approached through a
variety of methods, each designed to address specific assumptions and practical consider-
ations. However, several limitations persist across these approaches. A significant number
of these methods depend on strong assumptions about the data-generating process, such
as the requirement for covariates to follow an elliptically contoured distribution or the need
for the distribution of covariates to be known or pre-estimated. Moreover, many existing
methods are susceptible to the curse of dimensionality, often exhibiting an exponential
dependency on the data dimension, which hampers their applicability in high-dimensional
settings. Another notable limitation is the lack of joint estimation of the link function
and the underlying feature space, as most methods focus solely on recovering the features.
Furthermore, these approaches are typically confined to additive noise models, which ef-
fectively limits them to scenarios that align with the use of the square loss.

In this thesis, we therefore aim to develop methods that operate under minimal as-
sumptions about the data-generating mechanism and avoid overly restrictive assumptions
on the true regression function, which minimises the expected risk for a given loss. We
attempt to move beyond the square loss and to simultaneously estimate the feature space,
its dimension, and the prediction function. Additionally, we strive to design approaches
that mitigate the curse of dimensionality, enhancing their applicability to high-dimensional
datasets. These objectives will be pursued within the framework of regularised empirical
risk minimisation, providing a flexible approach for supervised learning with hidden linear
features.

3 Overview of Contributions
To address the challenges highlighted in the previous subsections, we propose three dis-
tinct methods for non-parametric learning with hidden linear features using regularised
empirical risk minimisation. Before delving into the contributions of each chapter, we pro-
vide a brief overview of the thesis structure. Each chapter introduces a different method,
complete with its own notations (with the majority of them being common) and results,
allowing them to be read independently. The chapters are presented in the order of their
development during the course of this thesis.

In Chapter 2, we explore a novel approach as an extension of the work of Rosasco
et al. [2013] on variable selection. The method incorporates a trace norm penalty on the
sample matrix of gradients within reproducing kernel Hilbert spaces (RKHS) that include
the partial derivatives of their kernel functions. The key idea is to leverage the gradients
of the function as a means to capture the underlying linear structure within the data.

In Chapter 3, we extend the empirical risk minimisation framework by introducing
a derivative-based overlapping group LASSO penalty, applied to functions represented
in a basis of multivariate orthonormal Hermite polynomials. By using the orthogonality
and rotation invariance properties of Hermite polynomials, we iteratively rotate the data,
aligning it with the most informative directions.

In Chapter 4, we introduce a novel method by using averages of Sobolev spaces over
one-dimensional projections of the data. The method combines kernel methods with
infinite-width one-hidden layer neural networks. Our approach, centred around the Brow-
nian kernel, substitutes the non-linearity of ReLU activations in neural networks with
a kernel-based method. The positive homogeneity of the Brownian kernel is pivotal in
steering the optimisation process.
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Finally, the conclusion will address several key unresolved research questions. We now
proceed to a more detailed examination of each contribution, starting with a discussion of
the methods, followed by the main results, and concluding with an analysis of the strengths
and weaknesses of each approach. Relevant references for the complete contributions will
be provided in context.

3.1 Trace Norm Penalty on Sample Matrix of Gradients

Here, we present the yet unpublished work of Chapter 2, while the corresponding code is
available at https://github.com/BertilleFollain/KTNGrad.

Method. In Chapter 2, building on the work of Rosasco et al. [2013] on variable selection,
we introduce a novel method called KTNGrad. The key idea behind KTNGrad is
to exploit the information about the underlying feature space that is contained in the
gradients while operating within reproducing kernel Hilbert spaces that are sufficiently
regular. This allows us to avoid computing gradients through finite differences and instead
compute them directly through the intrinsic properties of RKHS.

We begin by noting that if the minimiser of the expected risk (here considered for
the square loss), f∗, adheres to the multi-index model, then there exist a function g∗ and
a matrix P ∈ Rd×s such that f∗ = g∗(P ⊤·). Assuming all relevant quantities are well-
defined, this implies that for any x ∈ X , the gradient satisfies ∇f∗(x) = P∇g∗(P ⊤x).
Consequently, the gradient at any given point contains information about the underlying
feature space. More formally, for any function f belonging to the Sobolev space H1(ρX)
(with ρX the distribution of the covariates), defined as H1(ρX) := {f ∈ L2(ρX) | ∀a ∈
[d], ∂f(x)/∂x(a) ∈ L2(ρX)}, we can express the covariance matrix of the gradients of f as

cov(∇f) := cov(∇f(X)) = EρX

(
∇f(X)∇f(X)T

)
∈ Rd×d.

Within this framework, the covariance matrix of the gradients of the true function f∗

satisfies cov (∇f∗) = P cov
(
∇g∗(P T X)

)
P T . Assuming that the rank of cov

(
∇g∗(P T X)

)
is equal to s, the number of linear features, it follows that the rank of cov(∇f∗) is also s,
which is typically much smaller than d.

However, because the rank is both non-continuous and non-convex, it presents sig-
nificant challenges as an optimisation penalty. Additionally, the direct computation of
the covariance matrix is not feasible since ρX is unknown. To overcome these issues and
following classical extensions of ℓ1 norm regularisation, we employ a convex relaxation by
using the trace norm (∥ · ∥∗) of the sample matrix of gradients

∇nf := (∇f(x1)T ,∇f(x2)T , . . . ,∇f(xn)T )T /
√

n ∈ Rn×d,

which estimates tr
(√

cov(∇f)
)
, providing a convex alternative to the rank of cov(∇f).

There are still two challenges to address: how to compute the gradients at the data
points, given that finite differences are often unreliable and unstable in the context of ran-
dom covariates, and how to effectively compute the minimiser of the regularised empirical
risk minimisation problem. This is where reproducing kernel Hilbert spaces (RKHS) be-
come advantageous. Let H denote an RKHS associated with a reproducing kernel k. If
we assume that the kernel is twice differentiable, as is the case with the Gaussian kernel,
then for all a ∈ [d], (∂ak)x := t → ∂k(x, t)/∂xa (the derivative w.r.t the a-th component
of x) also belongs to H for any x ∈ X . Moreover, for any f ∈ H, the partial derivative
of any f ∈ H at x with respect to xa can be computed as ∂f(x)

∂xa
= ⟨f, (∂ak)x⟩H. This
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property allows us to compute the gradients at the data points directly using the RKHS
structure, bypassing the need for finite differences. Additionally, empirical risk minimisa-
tion in an RKHS is typically tractable due to the representer theorem, which ensures that
the minimiser can be expressed as a linear combination of the kernel functions at the data
points.

Formally, the KTNGrad estimator f̂ is then defined by solving the following optimi-
sation problem

f̂τ = arg min
f∈H
R̂(f) + 2τ∥∇nf∥∗ + τν∥f∥2H,

where the loss defining the risk is the square loss and τ > 0 is a regularisation parameter
that needs to be chosen. The added regularisation using the RKHS norm is used for
computational and statistical stability with a fixed and very small parameter ν.

To compute the estimator, we employ an adapted version of the representer theorem,
which allows us to express the estimator as a linear combination of the functions in the
sets {k(xi, ·) | i ∈ [n]} and {∂akxi | i ∈ [n], a ∈ [d]}. To handle the trace norm penalty, we
reformulate the problem using a variational approach, resulting in a convex minimisation
problem involving two sets of variables. The optimisation process alternates between
fixing one variable and solving for the other in closed form. This alternating minimisation
is proved to converge, with each iteration incurring a computational cost of O(n3d4).

The features can then be computed by taking the leading right singular vectors of the
sample matrix of gradients ∇nf̂τ , with their number ŝ estimated by the rank of ∇nf̂τ

leading to P̂ , or if s is known to P̂s.

Main result. The main statistical properties of KTNGrad are summarised in the
following informal theorem, which outlines the key assumptions as well as the prediction
and feature learning capabilities.
Theorem 1 (Informal). We assume that the true regression function f∗ belongs to H,
with a twice differentiable reproducing kernel.

• Convergence of the expected risk: The expected risk of KTNGrad converges
to the minimal risk R(f∗) without exponential dependency in the data dimension d.
Specifically, there exists a universal constant C > 0 such that for any δ ∈ (0, 1], with
probability at least 1− δ,

R(f̂τ )−R(f∗) ≤ C

(
1√
n

( 1√
τν

+ 1
)2

+
√

τ

ν

d5/4

n1/4

)
log 6 + 2d

δ

+τ
(
2∥∇f∗∥∗ + ν∥f∗∥2H

)
.

• Recovery of the hidden linear features: The method is capable of recovering
the underlying feature space in Frobenius norm when the dimension is known and
otherwise in a safe filter manner, when the sample size increases. For any positive
sequence (τn)n∈N such that τn → 0 and (

√
nτ2

n)−1 → 0 as n → ∞, with ΠQ the
projection matrix associated to a matrix Q, we have

∥ΠP −ΠP̂s
∥2F

P→ 0 and ∥ΠP (Id −ΠP̂ )∥2F
P→ 0.

Analysis. We summarise the key contributions and insights gained from Chapter 2.
• Rate of convergence: KTNGrad achieves convergence rates for the expected

risk that do not depend exponentially on the data dimension, addressing a major
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Chapter 1. General Introduction

challenge in high-dimensional non-parametric learning. However, this result is based
on the strong assumption that the model is well-specified (f∗ ∈ H), and there is still
a polynomial dependency on the data dimension.

• Feature recovery: KTNGrad demonstrates strong capability in recovering the
underlying feature space, as supported by both statistical analysis and experimental
results. However, while the method consistently identifies the correct feature space,
it does not recover its dimension. This is visible in both experiments and theory, as
we only manage to prove that the estimate of the dimension is asymptotically larger
than the true dimension of the feature space due to the lower semi-continuity of the
rank, resulting in a safe filter. However, using an adaptive method might alleviate
this issue.

• Computational complexity: The method requires solving a convex optimisation
problem with a trace norm penalty on the sample gradient matrix. While this
ensures good convergence properties, this comes with a substantial computational
cost of O(n3d4). Although employing Nyström approximation could help reduce
some of the computational burden, the reliance on the derivatives of all variables
and the context of working in a reproducing kernel Hilbert space make the method
inherently resource-intensive.

• Inadequate function space: A significant conceptual limitation of KTNGrad
is that RKHS associated with usual kernels are not well-suited to the multi-index
model. The core issue lies in the incompatibility between the assumptions that
f∗ ∈ H and f∗ = g∗(P ⊤·), a critique which also applies to the variable selec-
tion framework discussed by Rosasco et al. [2013]. For instance, belonging to the
RKHS corresponding to the Gaussian kernel requires that all first-order derivatives
of f∗ be square-integrable with respect to the Lebesgue measure on Rd. How-
ever, in the simple case of one relevant variable f∗(x) = g∗(x1), this condition is∫
Rd

(
(g∗)′(x1)

)2dx1 . . . dxd < ∞, which is not possible except in edge cases. This
reasoning leads us to explore a Hilbert space of functions with an orthonormal Her-
mite polynomial basis in the next chapter. Decomposing functions in this basis
reveals that the function space aligns well with the multi-index model and variable
selection framework, offering a clear interpretation of dependency on a few variables
or linear projections through the coefficients in the basis.

3.2 Group LASSO Penalty on Hermite Polynomials Decomposition

This contribution corresponds to the contents of Chapter 3, which has been accepted by
the Electronic Journal of Statistics: Follain and Bach [2024b], while the code is available
at https://github.com/BertilleFollain/RegFeaL.

Method. The proposed method, RegFeaL, leverages the orthogonality and rotational
invariance of normalised Hermite polynomials to perform either variable selection or fea-
ture learning. First, we highlight the relevant properties of the Hermite polynomials.
The normalised one-dimensional Hermite polynomials (hk(x))k≥0 form an orthonormal
basis for the standard Gaussian measure on R. The first few polynomials are given
by h0(x) = 1, h1(x) = x, h2(x) = 1√

2(x2 − 1), h3(x) = 1√
6(x3 − 3x). These polyno-
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mials are extended to the multivariate case by defining, for α ∈ Nd,

Hα(x) =
d∏

a=1
hαa(xa).

This family forms an orthonormal basis for the Hilbert space of squared integrable function
with the distribution q, L2(q), where q(x) = e−∥x∥2/2/(2π)d/2 denotes the standard normal
distribution on Rd.

In this context, if a function f ∈ L2(q) is expressed as f = ∑
α∈Nd f̂(α)Hα, then the

function f does not depend on a variable xa if and only if all coefficients f̂(α) for α ∈ Nd

such that αa > 0 are zero.1 This specific sparsity pattern in the coefficients motivates the
use of an overlapping group LASSO type of penalty. Consequently, the Hermite polyno-
mial basis is well-suited for variable selection. To achieve this, we introduce a sparsity-
inducing penalty, depending on hyper-parameters r ∈ (0, +∞) and (ck)k∈N∗ (which is
either ck = 1k≤M or ck = ρk with M ∈ N∗ and ρ ∈ (0, 1))

Ωvar(f) =

 d∑
a=1

 ∑
α∈(Nd)∗

αa
1

c|α|
f̂(α)2

r/2


1/r

,

where |α| = ∑d
a=1 αa. This penalty encourages sparsity in the dependency of f on indi-

vidual variables. The condition ∑
α∈(Nd)∗

αa
1

c|α|
f̂(α)2

r/2

= 0 ⇐⇒
∫
Rd

(
∂f

∂xa

)2
q = 0

highlights that the penalty enforces the nullity of the derivative of f with respect to xa. We
estimate f∗ in the variable selection setting by solving the following optimisation problem

fλ,µ
var := arg min

f∈F
R̂(f) + λΩ2

0(f) + µΩr
var(f),

where λ is a fixed parameter for the smoothness-inducing penalty Ω0, µ is a hyperparam-
eter to be chosen, and the loss defining the risks is any convex loss. When r ≥ 1 and the
loss function is convex, the objective function is strongly convex, ensuring a unique global
minimiser. For r < 1, which is typically used in practice to bypass the issues arising with
LASSO-type method enforcing too much bias, only a local minimiser can be found.

The rotational invariance property of the Hermite polynomials is central to extending
this method to feature learning. Specifically, for any x, x′ ∈ Rd, any k ∈ N, and any
orthogonal d× d matrix R,∑

|α|=k

Hα(x)Hα(x′) =
∑

|α|=k

Hα(Rx)Hα(Rx′).

This property allows for the development of a penalty suited for feature learning, defined
as

Ωfeat(f) =
(
tr
(
M

r/2
f

))1/r
,

1Note that here f̂(α) corresponds to coefficients in the Hermite polynomials decomposition of f , not to
the estimator of f∗.

15



Chapter 1. General Introduction

where the matrix Mf is given by

(Mf )a,b =
∑

α∈Nd

1
c|α|+1

√
αa + 1

√
αb + 1f̂(α + ea)f̂(α + eb), a, b ∈ [d].

Again, there is a link between the nullity of the derivatives and the definition of the
penalty, which is described in the main text. The matrix Mf is positive semi-definite, and
the penalty Ωfeat(f) encourages sparsity by pushing the eigenvalues of Mf towards zero,
thus promoting a low-rank solution. Importantly, c|α| depends solely on |α|, ensuring the
penalty remains rotation invariant, which is crucial to prevent the penalty from favouring
specific directions.

The eigendecomposition Mf = UDU⊤ reveals that if the rank of D is s, then the
function f depends only on s linear combinations of the original variables, corresponding
to the directions in U with non-zero eigenvalues. Moreover, one can construct a rotated
function g = f(U ·) such that the feature penalty on f is equivalent to the variable selection
penalty on g. This shows that feature learning can be seen as an extension of variable
selection that allows for rotations in the feature space.

The estimator for f∗ in the feature learning setting is thus defined similarly to the
variable selection setting by switching Ωvar for Ωfeat. To compute the estimator, we employ
a variational formulation for Ωfeat(f) that reformulates the problem as the minimisation
over two variables: the function f and an auxiliary variable Λ. Specifically, we solve

fλ,µ
feat, Λλ,µ

feat = arg min
f∈F , Λ∈Rd×d

R̂(f) + λΩ2
0(f) + µtrace(Λ−1Mf ),

subject to the constraints that Λ = RDiag(η)R⊤ with R an orthogonal d × d matrix
and ∑d

a=1 η
r/(2−r)
a = 1, with η a positive vector. The optimisation in closed-form (for

the square loss, otherwise we need to use other methods such as gradient descent to
compute the function f) alternates between fixing f and updating Λ by computing the
eigendecomposition of Mf and fixing Λ and updating f by solving a kernel ridge regression
problem, with the reproducing kernel kΛ defined by Hermite polynomials

kΛ(x, x′) =
∑

α∈(Nd)∗

c|α|Hα(R⊤x)Hα(R⊤x′)
λ + µα⊤η−1 .

This iterative procedure can be viewed as progressively rotating the data to uncover and
align with the underlying features while simultaneously learning the prediction function.

As the kernel function is defined as an infinite sum over Hermite polynomials, direct
computation is infeasible, and it is approximated via sampling. We use a tailored impor-
tance sampling technique where we sample from the distribution of Hermite coefficients α
guided by the auxiliary variable η. The whole optimisation process converges rapidly in
practice, typically within a small number of iterations. The complexity of one iteration is

O

(
nm′d + nd2

Hermite features
+ d2(m′)2 + d3

Mf and its eigendecomposition
+ md

Sampling
+ nm′ max(n, m′)

Kernel Ridge

)
,

where m is the number of samples drawn for α (and m′ the resulting unique samples).
This complexity can be substantial, as m′ must be sufficiently large to ensure that the
kernel’s representation is accurate.
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Main result. The primary statistical finding of this chapter is that the RegFeaL es-
timator, under minimal assumptions, achieves convergence of the expected risk to the
minimal risk with high probability despite being sensitive to the dimensionality of the
data. We illustrate this with an informal theorem for the case where the covariates are
bounded and the regularising sequence is chosen as ck = ρk.

Theorem 2 (Informal). Assume that the covariates X are bounded, i.e., ∥X∥2 ≤ R
almost surely, and that the loss function ℓ is Lipschitz with constant G. Let the true
regression function f∗ exist and belong to L2(q). The regularisation parameter λ is set to
zero and µ is chosen based on known problem parameters, and we define the norm Ω(f)
as Ωfeat(f) + |f̂(0)| or Ωvar(f) + |f̂(0)|. Then for any δ ∈ (0, 1), with probability greater
than 1− δ, the expected risk R(fµ) of the RegFeaL estimator fµ satisfies

R(fµ) ≤ R(f∗) + Ω(f∗) · G√
n

√
1 + eR2/2

(1− ρ)d

(
16
√

π

2 + 4
√

2
√

log 2
δ

)
,

and the norm of the estimator is bounded by Ω(fµ) ≤ 2Ω(f∗).

Chapter 3 presents this result in a more general setting, where the data is not nec-
essarily bounded and where any choice of the hyper-parameter sequence (ck)k>0 can be
considered. This informal result underscores the method’s sensitivity to the dimensional-
ity d, particularly due to the exponential dependency introduced by the infinite Hermite
polynomial basis, while still maintaining a favourable dependency on the sample size. The
assumption on the true function f∗ is mild, given the broadness of the considered function
space.

Analysis. We summarise the key contributions and insights gained from Chapter 3.

• Use of Hermite polynomials: The method leverages the orthogonality and rota-
tional invariance of Hermite polynomials to effectively align the data with its leading
directions. The structure of Hermite polynomials is particularly well-suited for vari-
able selection and feature learning, as it allows for the definition of an overlapping
group LASSO-type penalty that characterises dependencies on a few variables or
linear features. Compared to the previous function space of Chapter 2, the Hermite
decomposition is advantageous because it naturally accommodates functions that
depend on a small subset of variables or linear features.

• Statistical results: The method offers statistical guarantees under minimal as-
sumptions, particularly with respect to the function space in which the true pre-
diction function resides. This broad applicability is a key strength. However, the
reliance on an infinite basis introduces an exponential dependency on the dimen-
sionality of the data, which poses significant challenges in high-dimensional settings
where multi-index models are most relevant. While alternative proof techniques
might reduce this dependency, such an approach is not yet apparent.

• Computational cost: The method’s foundation on an infinite Hermite polynomial
basis necessitates a sophisticated sampling scheme to approximate the kernel at each
iteration of the optimisation process. This approach, while theoretically sound, is
computationally intensive and hinders the method’s practical applicability, especially
in large-scale problems.
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• Function space limitations: The infinite Hermite polynomial basis and corre-
sponding Hilbert space of function are well-suited for capturing the sparsity pat-
terns crucial for variable selection and feature learning. Compared to the RKHS
considered in the previous chapter, the Hilbert space is actually compatible with the
multi-index model and the variable selection setting, and it is also broader, which
allows for milder assumptions on the true regression function. However, this very
expansiveness also introduces significant challenges. The reliance on an infinite basis
leads to an exponential dependency on the dimensionality in the statistical results
and necessitates a complex sampling scheme in the optimisation procedure. This
suggests that alternative function spaces might be more appropriate. In the next
chapter, we consider another function space based on the fusion of infinite-width
one hidden-layer neural networks and kernel methods. Although this space is also
computationally intractable due to its integral-based definition, it can be more effi-
ciently approximated using particles, offering a simpler alternative to the sampling
scheme employed for the Hilbert space used in RegFeaL.

3.3 Integrating Neural Networks and Kernel Methods

This contribution corresponds to the contents of Chapter 4, which are available in the
preprint (under review by the Journal of Machine Learning Research): Follain and Bach
[2024a], while the code is available at https://github.com/BertilleFollain/BKerNN.

Method. In this chapter, we introduce a novel approach called Brownian kernel neural
network (BKerNN), which merges neural networks and kernel methods. The key idea
behind BKerNN is the construction of a custom function space inspired by the infinite-
width limit of single hidden layer neural networks, where the non-linearity is replaced by
a function from a RKHS. The function space, denoted by F∞, allows each function to
be represented as an integral over linear combinations of input features, weighted by a
probability measure. Specifically, functions in this space take the form

f(x) = c +
∫

Sd−1
gw(w⊤x) dµ(w),

where c is a constant, w is a direction vector lying on the unit sphere Sd−1 for a non-
specified norm ∥ · ∥ (either ℓ1 or ℓ2), gw is a function that varies with w and belongs
to a Sobolev space which is also a RKHS H, and µ is a probability measure over the
sphere. The space H contains functions with square-integrable weak derivatives, ensuring
a certain degree of smoothness, and such that g(0) = 0. Its inner product is defined
as ⟨g, g̃⟩ =

∫
R g′g̃′. The RKHS H is associated to the reproducing kernel k(B)(a, b) =

(|a|+ |b| − |a− b|)/2 = min(|a|, |b|)1ab>0, which is the Brownian motion kernel.
In practice, we approximate this infinite-dimensional space with a finite-width ver-

sion Fm, where the integral is replaced by a finite sum over m particles (analogous to
neurons in a neural network). Thus, functions in Fm are expressed as

f(x) = c + 1
m

m∑
j=1

gj(w⊤
j x),

where (wj)j∈[m] are direction vectors, and (gj)j∈[m] are corresponding functions from the
spaceH. The learning process in BKerNN is guided by a regularisation term that controls
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the complexity of the learned function. The basic regularisation is defined as

Ω0(f) =
∫

Sd−1
∥gw∥H dµ(w),

where ∥gw∥H measures the roughness of the function gw. This regularisation induces spar-
sity in the learned representations by limiting the number of non-zero functions gw, which
indirectly promotes feature selection. To further enhance the feature learning capability of
BKerNN, other regularisation terms can be introduced. For instance, a variable penalty
encourages the model to depend on only a few variables by penalising the row norms
of the weight matrix containing the (wj)j∈[m]. A feature penalty, on the other hand,
promotes learning a low-rank representation by applying a nuclear norm penalty to the
weight matrix, encouraging dependency on only a few linear transformations of the data.
These penalties can also be made concave, which, although more challenging to optimise
in theory, can lead to even sparser solutions by promoting boundary solutions.

The optimisation objective is to minimise the regularised empirical risk

f̂λ = arg min
f∈F

R̂(f) + λΩweights(f),

where λ is the regularisation parameter and Ωweights is any of the considered penalties.
Interestingly, BKerNN can be viewed from two different perspectives: as a kernel

method and as a neural network. From the kernel perspective, the learning process consists
in kernel ridge regression with a kernel that is learnt during training. The kernel matrix
is defined as

K = 1
m

m∑
j=1

K(wj),

where K(wj) is the kernel matrix associated with the Brownian kernel for the training data
projected onto the direction wj .

From the neural network perspective, BKerNN resembles a one-hidden-layer neural
network where the weights from the input layer to the hidden layer are the direction vec-
tors (wj)j∈[m], and the activation functions are the learned functions (gj)j∈[m]. Unlike
traditional neural networks, where activation functions are predefined and only a multi-
plicative factor is learnt, BKerNN learns the activation functions directly, which adds
flexibility to the model.

The function space F∞ is broader than the space of functions that can be represented
by traditional infinite-width one-hidden layer neural networks with ReLU activations. This
can be observed through Fourier transform analysis, indicating that BKerNN is capable
of capturing a wider variety of functions. Remarkably, this expanded representational
power does not result in increased optimisation complexity.

The computation of BKerNN is based on using an adapted version of the representer
theorem, which yields a parametric formulation for minimisation. We focus on the square
loss here for ease of exposition and the availability of closed-form solutions. However,
the method is generalisable to other loss functions using gradient-based techniques. The
optimisation problem can be formulated as follows

min
w1,...,wm∈Rd,c∈R,α∈Rn

1
2n
∥Y −Kα− c1n∥22 + λ

2 α⊤Kα + λΩweights(w1, . . . , wm),

where K is the kernel matrix defined by the weights (wj)j∈[m] (which are no longer con-
strained anymore after some reformulation) and α appears through the representer theo-
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rem. The optimisation process then alternates between two steps: optimising the coeffi-
cients α and the intercept c while keeping the weights (wj)j∈[m] fixed, and then optimising
the weights (wj)j∈[m] using a proximal gradient descent approach.

When the weights (wj)j∈[m] are fixed, the kernel matrix K becomes constant, allowing
the optimisation of α and c to be solved explicitly, akin to solving a classical kernel ridge
regression problem. The complexity of this step is O(n3 + n2d), which can be computa-
tionally demanding for large datasets. To reduce the computational cost, techniques like
the Nyström method can be employed to approximate the kernel matrix.

The next step involves optimising the weights (wj)j∈[m] while keeping α and c fixed.
This is more challenging because the resulting objective function G is not convex with
respect to the weights, and it is only differentiable almost everywhere. The weights are
therefore updated using a proximal gradient descent approach. The proximal operator
depends on the penalty. For instance, the update for the basic penalty Ω0 is given by

wj ← proxλγΩ

(
wj − γ

∂G

∂wj

)
where proxλγΩ(u) =

(
1− λγ

2m

1
∥u∥

)
+

u,

where γ is the step-size, adjusted through a backtracking line search to ensure efficient
optimisation. Each proximal step is easy to compute using the explicit formulas, with
complexities ranging from O(md) for the basic and variable penalties and O(md min(m, d))
for the feature penalties.

The optimisation procedure leverages the homogeneity of the Brownian kernel, which
ensures well-behaved optimisation dynamics. The method’s convergence is supported by
theoretical insights that align with established results in mean-field neural networks. De-
spite the lack of a formal proof due to the non-differentiability of the Brownian kernel, the
procedure is robust in practice, with experiments confirming its effectiveness.

Main result. The following informal theorem provides insight into the generalisation
capabilities of BKerNN by offering a high-probability bound on the expected risk of the
estimator.

Theorem 3 (Informal). Consider the BKerNN estimator f̂λ with the basic penalty Ω0.
Assume that the loss is convex and Lipschitz with constant L, that the true regression
function f∗ belongs to F∞ and that 1 +

√
∥X∥∗ is subgaussian with variance proxy σ2,

with ∥ · ∥∗ the dual norm of the one used to define the sphere Sd−1. Then, with λ chosen
using known problem parameters (independent of Ω0(f∗)), with probability at least 1 − δ,
the expected risk of f̂λ is bounded by

R(f̂λ) ≤ R(f∗) + Ω0(f∗)CL

(
1√
n

+ Gn + σ√
n

√
log 1

δ

)
,

where C is a universal constant, and Gn denotes the Gaussian complexity of the function
class with Ω0 constrained below a certain threshold. The quantity Gn is further bounded
using another universal constant, C ′, as follows

Gn ≤ C ′ min

√d

n

√
log(n)

√
EX∥X∥∗,

1
n1/6 (log d)1/4

(
EX1...Xn

(
max
i∈[n]
∥Xi∥∗

)2)1/4
 .

The bound on Gn is presented in two forms: a dimension-dependent bound and a
dimension-independent bound. The dimension-dependent bound scales well with the sam-
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ple size and shows only a square-root dependency on the dimension. In contrast, the
dimension-independent bound, while scaling less favourably with the sample size at n−1/6,
depends on the dimension only logarithmically. The dependency of the distribution-
dependent terms in the data dimension is also analysed and is reasonable. This favourable
outcome is achieved without imposing strong assumptions on the true regression function
as the well-specified model assumption is reasonable given the broad function space F∞.
We conjecture that the true bound might actually be logarithmic in dimension while main-
taining the standard n−1/2 rate with respect to sample size. Additionally, the assumption
of the data distribution’s subgaussianity is mild, making this result widely general.

Analysis. We summarise the key contributions and insights gained from Chapter 4.

• Combining strengths: BKerNN efficiently merges some of the benefits of kernel
methods and infinite-width one-hidden-layer neural networks. This is achieved by
substituting the traditional non-linear activation function with a function drawn
from a reproducing kernel Hilbert space, enhancing the model’s expressive power.

• Efficient optimisation: The optimisation process is straightforward and robust
compared to neural networks, benefiting from the positive homogeneity of the Brow-
nian kernel. This property ensures that the optimisation aligns with insights from
the mean-field analysis of neural networks, making the process theoretically sound.
The approximation of the infinite-width space using particles is easy and principled
compared to the sampling process used for RegFeaL

• Generalisation guarantees: The statistical analysis provides high-probability
bounds on the expected risk, showing that BKerNN achieves competitive rates
of convergence. Two types of bounds are provided: a dimension-dependent bound
that scales well with sample size and a dimension-independent bound that scales less
favourably with sample size but only logarithmically with the data dimension. The
mild assumptions on data distribution and model specification make these results
broadly applicable.

• Practical performance: Extensive numerical experiments validate the theoretical
findings, with BKerNN outperforming traditional kernel methods and competing
favourably with neural networks on real-world datasets.

• Adaptivity in misspecified models: If the model is not well-specified but the
Bayes predictor f∗ is Lipschitz continuous, neural networks with ReLU activation
and bounded Banach norm achieve a convergence rate of O(n−1/(d+5)), while kernel
methods achieve O(n−1/(d+1)), both constrained by the curse of dimensionality. In
misspecified settings under the multi-index model where f∗ = g∗(P ⊤·), RKHS-based
methods fail to exploit the reduced dimensionality, resulting in unchanged rates.
However, neural networks can adapt to this structure, yielding rates that depend
on the lower dimension of P rather than d. BKerNN shares this adaptivity, as
indicated by the fact that Ω0(f∗) ≤ Ω0(g∗), which, along with its strong theoretical
guarantees in well-specified models and excellent practical performance, underscores
its significance in the field of non-parametric supervised learning with hidden linear
features.

This concludes the presentation of the contributions. Each contribution is presented
in detail in the following Chapters 2, 3, and 4. See the Conclusion for perspectives related
to this work.
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CHAPTER 2

Trace Norm Penalty on Sample Matrix of Gradients

The contents of this chapter have yet to be published while the code is available at https:
//github.com/BertilleFollain/KTNGrad.

In this work, we tackle the challenges of high-dimensional nonparametric learn-
ing by focusing on multi-index models, i.e., where the regression function is
represented as a composition of a low-dimensional linear projection and a non-
linear function. We are particularly interested in the empirical risk minimisa-
tion framework due to its versatility, as it can be applied to a wide range of
problems beyond traditional square loss and regression tasks. We introduce a
novel method that uses empirical risk minimisation within a reproducing kernel
Hilbert space (RKHS), augmented by a trace norm penalty on the sample ma-
trix of gradients. Our approach is computationally efficient, featuring a convex
optimisation procedure that converges in just a few iterations and offers an
explicit convergence rate via a reweighting technique. We establish the theo-
retical convergence of our method, demonstrating that it achieves convergence
rates that do not depend exponentially on the data dimension for the expected
risk of the function estimator in well-specified settings, while reliably recovering
the underlying feature space in a safe filter manner. The effectiveness of our
approach, named KTNGrad, is validated through a series of experiments that
highlight its performance and behaviour.
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Chapter 2. Trace Norm Penalty on Sample Matrix of Gradients

1 Introduction
We focus on multi-index models [Xia, 2008], which provide an effective strategy for address-
ing the challenges posed by high-dimensional data in nonparametric supervised learning.
In these models, the regression function f∗, which captures the relationship between the
response and the covariates, is expressed as f∗ = g∗(P ⊤·), where g∗ is an unknown non-
parametric function, and P is a low-rank matrix that reduces the dimensionality of the
data. This matrix P can be interpreted as a set of linear features that are relevant to the
learning problem.

The multi-index model is particularly valuable because it mitigates the challenges
associated with high-dimensional nonparametric models, where exponential dependency
on the data dimension is often observed [Dalalyan et al., 2008], a manifestation of the curse
of dimensionality [Bellman, 1961]. By leveraging the structure assumed in the multi-index
model, prediction performance can be significantly enhanced. Additionally, learning the
linear features represented by P offers intrinsic interpretability, making it an attractive
approach for both predictive accuracy and understanding the underlying relationships in
the data.

Related work. Various approaches have been developed to address multi-index mod-
els. One prominent avenue is the method of moments, which constructs specific moments
that eliminate the unknown function, isolating the impact of the features. The foun-
dational work by Brillinger [2012] initially focused on Gaussian data and feature spaces
of dimension 1. This method was later broadened to handle distributions with differen-
tiable log-densities, giving rise to the average derivative estimation (ADE) method [Stoker,
1986]. Further advancements allowed the method to accommodate higher-dimensional fea-
ture spaces through techniques such as slicing (e.g., slice inverse regression, SIR [Li, 1991])
and the use of second-order moments (e.g., principal Hessian directions, PHD [Li, 1992])
under assumptions like elliptical symmetry in the data distribution. Despite these devel-
opments, the efficacy of these methods often hinges on strong, and sometimes impractical,
assumptions about the distribution’s shape, which may also need to be known beforehand.

Beyond moment-based techniques, optimisation-driven approaches have also been ex-
plored. These methods, as seen in the works of Fukumizu et al. [2009] and Xia et al.
[2002], employ local averaging to build an objective function, which is then minimised to
estimate the feature subspace. Although these approaches can theoretically suffer from
exponential dependence on the data dimension, they have demonstrated strong practical
performance. Among them, the MAVE method [Xia et al., 2002] stands out as a leading
tool in practical applications.

We are particularly interested in using regularised empirical risk minimisation due to
its versatility, allowing it to be applied across various contexts beyond traditional square
loss supervised learning. We consider this work as a first step toward expanding multi-
index models to address more complex problems, such as those found in control systems.
Our goal is to develop a method that makes minimal assumptions about the distribution
and has limited dependency on the data dimension. Our approach involves regularising the
empirical risk using derivatives, based on the observation that, under certain smoothness
conditions, the gradient of f∗ satisfies ∇f∗ = P∇g∗(P ⊤·), thereby containing crucial
information about the underlying feature space P . This regularisation by derivatives
is common, such as in classical spline regularisation in Sobolev space [Wahba, 1990],
while for linear subspace estimation, it has been used by Babichev and Bach [2018] in
conjunction with the SADE method. We implement our method within reproducing kernel
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2. Problem Setting and Estimators

Hilbert spaces, which allows us to avoid the potential instability associated with computing
derivatives via finite differences. This use of RKHS has also been see in Cabannes et al.
[2021] for semi-supervised learning or Rosasco et al. [2013] for variable selection. Our
goal is precisely to extend the work of Rosasco et al. [2013] to the linear feature learning
setting, which results in our framework being similar though their penalty is designed to
select variables, whereas ours is focused on identifying linear subspaces.

Contributions. In this chapter, we introduce a novel approach for simultaneously es-
timating the regression function, the underlying feature space, and its dimension within
the context of multi-index models. Our method leverages the regularised empirical risk
minimisation framework with the square loss, working within a reproducing kernel Hilbert
space (RKHS) that includes the partial derivatives of the reproducing kernel. Inspired
by the relationship between gradients and the underlying features, we consider the trace
norm of the sample matrix of gradients as a regularising penalty.

We establish the convergence of the optimisation procedure used to compute the esti-
mators. In a well-specified setting, we demonstrate that the risk of the function estimator
converges to the minimal risk at a rate that does not depend exponentially on the data
dimension. Additionally, we show that our approach reliably recovers the underlying fea-
tures in a safe filter manner. Finally, we present a set of experiments to illustrate the
performance of our method.

Notations. For any n ∈ N∗, we denote the set {1, . . . , n} by [n]. The notation An
P→ 0

indicates that the random variables An converge to 0 in probability. For a vector x ∈ Rd

and a ∈ [d], x(a) denotes the a-th component of x, and ∥x∥2 represents its ℓ2 norm. The
identity matrix of size n is denoted by In.

For a matrix M ∈ Rn×m, ∥M∥∗ denotes its trace norm (sum of singular values),
rank(M) its rank (number of non-zero singular values), tr(M) its trace (when n = m),
∥M∥op its operator norm (largest singular value), ∥M∥F its Frobenius norm (the ℓ2 norm
of its singular values), Mi,j its (i, j)-th element, and ∥M∥∞ its infinity norm (maximum
absolute element value). The matrix Diag(M) is diagonal with the diagonal elements of
M as its diagonal, and M ⪰ N (or M ≻ N) indicates that M −N is positive semi-definite
(or positive definite), assuming M and N are symmetric.

For a tensor W ∈ Rn×d×m, W:,:,k represents the matrix in Rn×d obtained by slicing
along the third dimension, and Wi,j,: is the vector in Rm obtained by slicing along both the
first and second dimensions. Multiplication of a tensor W by a vector x ∈ Rm along the
third dimension is defined as Wx = ∑m

k=1 W:,:,kx(k) ∈ Rn×d, and for a matrix Q ∈ Rd×d,
WQW T ∈ Rm×m is defined as ∑i,j,l Wi,j,:Qj,lW

T
i,l,:.

In a reproducing kernel Hilbert space (RKHS) H, for functions f, g ∈ H, ∥f∥H repre-
sents the RKHS norm, and ⟨f, g⟩ denotes the inner product in H.

2 Problem Setting and Estimators
We consider a classical supervised learning setting with a training set (xi, yi)i∈[n] of fac-
tor/response pairs. The training data are assumed to be independent realisations of the
random variables (X, Y ), which have a probability measure ρ on X × Y ⊂ Rd × R. The
random variable Y is assumed to have finite variance, and the marginal probability mea-
sure of X is denoted ρX . Our objective is to find the function f∗ that minimises the
population risk R(f) = Eρ

(
(y − f(x))2) over the class of functions L2(ρX) := {f : X →
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Chapter 2. Trace Norm Penalty on Sample Matrix of Gradients

Y,
∫

X f(x)2dρX < ∞}. It is known that the minimiser f∗(x) is Eρ(Y |X = x). We then
define the empirical risk as R̂(f) := 1

n

∑n
i=1(yi − f(xi))2.

For convenience, we use the quadratic loss in our analysis, though it could be easily
adapted to any convex loss function, which is a strength of our method. We adopt the
framework of regularised empirical risk minimisation due to its versatility, allowing it to
be applied to a wide range of problems where a risk can be defined. Although we focus
on typical supervised learning scenarios using the square loss for simplicity, our long-term
goal is to extend this approach to other problems, such as in control, which is not so easily
feasible with moment-based methods [Xia et al., 2002, Li, 1991].

We further impose the following multi-index model [Xia, 2008, Yuan, 2011], as dis-
cussed in the introduction.

Assumption 1 (Multi-Index Model). ∀x ∈ X , f∗(x) = g∗(P T x), with g∗ : Rs 7→ Y, with
P ∈ Rd×s (s ≤ d, unknown) a full-rank matrix, i.e., rank P = s.

This means that the dependency of Y on X is fully characterised by P T X ∈ Rs which
has a smaller dimension than X ∈ Rd. It is therefore of interest to estimate P . Some
methods suffer from first estimating g and then P , leading to stronger bias on P [Xia
et al., 2002]. Instead, we aim to estimate both g∗ and P , or rather f∗ and P , at the same
time. We further remark that P cannot be exactly recovered, even in the noiseless case,
because multiple (g∗, P ) pairs can verify equality to f∗. We can therefore only hope to
recover the column space of P .

2.1 Low-Rank Penalty

We remark that under Assumption 1, if the gradient is well-defined, we have ∀x ∈
X ,∇f∗(x) = P∇g(P T x). This was first noticed in effective dimension one by Härdle
and Stoker [1989]. Other lines of work use this idea, like the one started by Li [1992].
Therefore, for any x ∈ X , ∇f∗(x) belongs to the column space of P . Furthermore, for any
f ∈ H1(ρX) := {f ∈ L2(ρX),∀a ∈ [d], ∂f(x)/∂x(a) ∈ L2(ρX)}, which is a Sobolev space
[see Adams and Fournier, 2003], we can write

cov(∇f) := cov(∇f(X)) := EρX

(
∇f(X)∇f(X)T

)
∈ Rd×d,

and we then have cov (∇f∗) = P cov
(
∇g∗(P T X)

)
P T . We therefore make the next as-

sumption.

Assumption 2 (Full-Rank of Covariance Matrix). We assume that f∗ ∈ H1(ρX) and
rank cov (∇f∗) = rank P = s.

This amounts to assuming that rank cov(∇g∗(P T X)) = s. The projection ΠP =
P (P T P )−1P T ∈ Rd×d on the column space of P is therefore also the projection on the
column space of cov(∇f∗).

Following in the footsteps of the Lasso [Tibshirani, 1996] and other sparsity inducing
penalties such as the group Lasso [Yuan and Lin, 2006], the fused lasso [Tibshirani et al.,
2005], a trace norm penalty for matrix estimation [Bach, 2008], and most similar to us a
penalty for variable selection [Rosasco et al., 2013], we consider adding a rank-penalty on
the matrix of gradients to the quadratic loss, yielding the following optimisation problem

arg min
f∈H1(ρX)

R̂ (f) + 2τ rank cov(∇f),
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with τ a positive regularisation parameter to be chosen.
However, as the rank penalty is non-convex, we replace it by a convex surrogate, i.e.,

∥∇f∥∗ := tr
(√

cov(∇f)
)

,

for ease of optimisation, which is a well-known technique, [see Candès and Recht, 2009,
Recht et al., 2010, Bach et al., 2012]. We cannot compute this quantity for a fixed f ,
since ρX is not known a priori. We can nevertheless estimate it using the training set. We
define

∇nf := (∇f(x1)T ,∇f(x2)T , . . . ,∇f(xn)T )T /
√

n ∈ Rn×d,

the (normalised) matrix of gradients at the observed data points, or sample matrix of
gradients. We then have that ∇nfT∇nf ∈ Rd×d is equal to 1

n

∑n
i=1∇f(xi)∇f(xi)T , which

estimates cov (∇f), and is actually also equal to the non-centred covariance matrix of
∇f(X) under the empirical measure of the data. We therefore overload the notation and
write cov(∇nf) := ∇nfT∇nf . We then have that our penalty is equal to the trace norm
of the sample matrix of gradients

∥∇nf∥∗ = tr
(√

cov(∇nf)
)

.

2.2 Reproducing Kernel Hilbert Space

We decide to restrict the functions we study to a reproducing kernel Hilbert space H, with
a twice differentiable reproducing kernel k. This is motivated by multiple factors. First,
this will allow us to efficiently compute gradients instead of using finite differences which
are unstable, especially in high-dimensions, as in the RKHS we consider, partial derivatives
are bounded linear functionals. An equivalent of the representer theorem (see Lemma 1
below) allows us to actually compute the estimator. Finally, empirical risk minimisation
in RKHS is known to avoid the curse of dimensionality if the problem is well-specified,
which is the setting we will study in Section 4. Estimation in RKHS also naturally adapts
to smoothness, which is an interesting property when considering misspecified settings
[Bach, 2024, Chapter 7].

Let us denote kx the function t 7→ k(x, t) and (∂ak)x the function t 7→ ∂k(x, t)/∂x(a).
We recall that (H, ∥ · ∥H) is the unique Hilbert space associated to a symmetric positive
definite function k, such that ∀f ∈ H, f(x) = ⟨f, kx⟩H. This is the reproducing property
[Aronszajn, 1950]. More information on RKHS can be found in Appendix B for the
interested reader. We now make a few additional assumptions on the reproducing kernel
k of H and on the data-generating mechanism.

Assumption 3 (Constraints on the Kernel and Outputs).

1. (Bounded features). There exists K1 > 0 such that ∀x ∈ X , k(x, x) ≤ K2
1 .

2. (Regular kernel). k is C2(X ,X ), i.e., twice continuously differentiable, and there
exists K2 > 0 such that ∀a ∈ [d], x ∈ X , ∂k(s,t)

∂s(a)∂t(a) |s=x,t=x ≤ K2
2 .

3. (Bounded outputs). Y ⊂ [−M, M ] for some M ∈ R+.

From Zhou [2008, Theorem 1], because k is at least twice differentiable, (∂ak)x also
belongs to H for any x ∈ X and further for any f ∈ H, ∂f(x)/∂x(a) = ⟨f, (∂ak)x⟩H. We
remark that Assumption 3.1 and 3.2 are verified for many well-known kernels, such as
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the Gaussian kernel, the Cauchy kernel, and if X is bounded, the polynomial, linear and
sigmoid kernels. We also remark that H ⊂ H1(ρX), because of Assumptions 3.1 and 3.2,
see Appendix B.

For computational stability and to make the problem strongly convex, we add a penalty
on the norm of f in the RKHS, with small regularisation parameter τν, where ν is fixed
and τ has to be chosen in practice, usually through cross-validation. This yields that
the final optimisation problem defining our estimator, which is coined KTNGrad (for
kernel trace norm of gradients), is

f̂τ := arg min
f∈H

(
R̂τ (f) := R̂ (f) + τ

(
ν∥f∥2H + 2∥∇nf∥∗

))
. (2.1)

We remark that the solution to Equation (2.1) is always defined as the functional
on f is coercive and 2τν-strongly convex with respect to the H-norm, so that existence
and uniqueness of the minimiser is ensured [Ekeland and Témam, 1999], for any ν > 0,
regardless of assumptions on f∗. Our setting is therefore similar to that of Rosasco et al.
[2013], except that they use tr(

√
Diag(cov(∇f))), as a penalty (in our notation, where

Diag(cov∇f) is the matrix in Rd×d with the diagonal of cov(∇f) as its diagonal, and 0
elsewhere), which reflects their different objective to select variables, rather than features.

Through f̂τ , we can estimate P by P̂s defined as the first s leading eigenvectors of
cov(∇nf̂τ ), if s is known. Otherwise s has to be estimated as well, and we can choose to
take ŝ := rank cov(∇nf̂τ ) or the number of eigenvalues exceeding a certain threshold as an
estimator of s, see Section 3.3. This yields that the estimator of P is P̂ , which is defined
as the first ŝ eigenvectors of cov(∇nf̂τ ). Due to the number of notations, we give a recap
of all the quantities in Table 2.1 in Appendix A.

3 Methodology of KTNGrad
In this section, we describe the methodology of the estimator KTNGrad, which first
consists in rewriting the problem from Equation (2.1) into a parametric problem using an
equivalent of the representer theorem, solving it through an iterative procedure and then
considering the eigenvectors of the empirical covariance matrix of the gradients.

3.1 Parametric Formulation

Closely following a result from Rosasco et al. [2013], there is an equivalent of the representer
theorem, allowing us to transform our problem in the RKHS H into a parametric one in
Rn(d+1).

Lemma 1 (Representer Theorem). Under Assumption 3.2, there exists (potentially mul-
tiple) θ∗ ∈ Rn(d+1) such that the solution to Equation (2.1) can be written as

f̂τ =
n∑

i=1

1
n

θ
(i)
∗ kxi +

n∑
i=1

d∑
a=1

1
n

θ
(i+na)
∗ (∂ak)xi . (2.2)

The proof can be found in Appendix B. We can then restrict the optimisation to
functions f ∈ H that can be expressed similarly to f̂τ . This allows us to fully rewrite
Equation (2.1) in a parametric form, with a change of variables to improve the conditioning
of the problem.
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Lemma 2 (Parametric Optimisation Problem). Under Assumption 3.2, any θ∗ ∈ Rn(d+1)

from Equation (2.2) is such that V 1/2θ∗ = β∗, with

β∗ = arg min
β∈Rn(d+1)

∥Y − Uβ∥22
n

+ τν

n
∥β∥22 + 2τ√

n
∥Wβ∥∗, (2.3)

where Y := (y1, . . . , yn)T ∈ Rn, U ∈ Rn×n(d+1), V ∈ Rn(d+1)×n(d+1), W ∈ Rn×d×n(d+1) are
defined in Definition 1. We also have Wβ∗/

√
n = ∇nf̂τ .

The proof can be found in Appendix C. Remark that Y is the vector of responses and
V is the Gram matrix of the set {kxi , (∂ak)xi |i ∈ [n], a ∈ [d]} in H. U and W are extracted
from V 1/2. Moreover β∗ is unique but θ∗ may not be if V is not invertible. We give these
matrix calculations for the Gaussian kernel in Definition 2, which is the choice we use in
practice in the numerical experiments of Section 5.

If β∗ is known, we can derive f̂τ using Lemma 1 with any θ∗ ∈ Rn(d+1) such that
β∗ = V 1/2θ∗. Additionally, P̂ can be easily obtained by taking the right singular vectors
(corresponding to non-zero singular values) of ∇nf̂τ = Wβ∗/

√
n. Therefore, knowing β∗

is sufficient to estimate the regression function, the feature space, and its dimension.

3.2 Optimisation Procedure

In this subsection, we address the central problem of estimating β∗. Given that it is a
convex problem, there are multiple optimisation methods available. We choose to use a
reweighted method [Bach et al., 2012], for reasons discussed at the end of this subsection.

For computational stability, we modify the optimisation problem of Equation (2.3) to
the following

β′
∗ = arg min

β∈Rn(d+1)

1
n
∥Y − Uβ∥22 + τν

n
∥β∥22 + 2τ√

n
tr
(√

(Wβ)T (Wβ) + nϵId

)
, (2.4)

with ϵ > 0 being a small constant. This transformation converts Equation (2.1) into
f̂ ′

τ = arg minf∈H R̂′
τ (f), as defined in Appendix A to account for ϵ.

Reweighted formulation. We follow the reweighted least squares approach as outlined
in [Bach et al., 2012]. The key idea is based on the fact that for any β ∈ Rn(d+1),

tr
(√

(Wβ)T (Wβ) + nϵId

)
= 1

2 inf
Λ∈Rd×d

Λ≻0

(
tr
(
(Wβ)Λ−1(Wβ)T

)
+ tr

(
Λ + nϵΛ−1

))
,

where Λ ≻ 0 denotes that Λ is positive definite. To minimise this quantity, we alternate
between minimising with respect to β while keeping Λ fixed, and minimising with respect
to Λ while keeping β fixed. This iterative process continues until the dual gap condition,
parameterised by δ, is satisfied. Closed-form formulas for the updates (see Lemma 4 in
Appendix C) and the duality gap (see Lemma 5 in Appendix C) facilitate this process.

The introduction of ϵ ensures that the matrix Λ does not become singular during
the updates. As a computational trick, ϵ should be chosen to be small to avoid signifi-
cantly disturbing the problem. The optimisation procedure we employ is an example of
a reweighted-ℓ2 method. For more details, refer to Argyriou et al. [2008] and Bach et al.
[2012].
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We present the pseudo-code for the method in Algorithm 1 below. This algorithm
includes the procedure for selecting the dimension and relevant features, as discussed in
Section 3.3.

Input: k a kernel, X ∈ Rn×d, Y ∈ Rn, τ > 0, ν > 0, ϵ > 0, δ > 0
1. Compute V ∈ Rn(d+1)×n(d+1), the Gram matrix of {kxi , (∂ak)xi |i ∈ [n], a ∈ [d]} in

O(n2d3).

2. Compute U ∈ Rn×n(d+1), W ∈ Rn×d×n(d+1) as in Definition 1 in O(n3d3).

3. t← 0

4. βt ← solution to (UT U + τνIn(d+1))β = UT Y in O(n3d3).

while the dual gap for βt from Equation (2.7) in Appendix C is larger than δ do

1. Λt ←
√

(Wβt)T (Wβt) + nϵId in O(n2d2 + d3).

2. βt+1 ← solving (UT U + τνIn(d+1) +
√

nτ(WΛ−1
t W T ))β = UT Y in O(n3d4).

3. t← t + 1

end

1. ∇nft+1 ←Wβt+1/
√

n in O(n2d2).

2. Obtain Singular Value Decomposition of ∇nft+1 in O(nd min(n, d)).

3. if s unknown then
ŝ← rank(∇nft+1) (potentially computed using some threshold)
P̂ ← first ŝ right singular vectors of ∇nft+1.
else
P̂s ← first s right singular vectors of ∇nft+1.
end

Output: ŝ, P̂ or P̂s in O(n3d4)
Algorithm 1: Pseudocode of KTNGrad.

Convergence of the optimisation. We now consider the guarantees on the conver-
gence of the optimisation procedure. As our problem satisfies the conditions of Beck [2015,
Theorem 3.3], we obtain the following convergence result.

Lemma 3 (Convergence of the Optimisation Procedure). Let (ft)t≥0 be the sequence of
functions in H with coefficients (θt)t∈N∗ generated by Algorithm 1 through the sequence
(βt)t∈N∗. Under Assumption 3.2, there exists a constant C > 0 defined in Equation (2.8)
such that for all t ∈ N∗,

R̂′
τ (ft)− R̂′

τ (f̂ ′
τ ) ≤ C

t
and ∥ft − f̂ ′

τ∥H ≤

√
2C

τνt
.

The proof can be found in Appendix C. We note that with the introduction of ϵ, the
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functional from Equation (2.4) becomes differentiable, allowing the use of gradient descent
methods. However, in the setting where τ = 0, our method achieves minimisation in a
single step, finding the exact solution directly. Given that the penalty is typically small,
convergence is observed in just a few iterations, which is much faster than the theoretical
result might suggest, see the experiment in Section 5.1. Additionally, gradient descent is
sensitive to ill-conditioning, whereas our method is not. This robustness is characteristic
of reweighted formulations [Daubechies et al., 2010].

3.3 Choice of Dimension

We use the leading eigenvectors of cov(∇nf̂τ ) ∈ Rd×d as an estimator of P . The number of
eigenvectors to retain must be determined: either s is known, or it needs to be estimated
using the data, which is typically the case in practice.

In Section 4, we discuss the statistical properties of cov(∇nf̂τ ). We note that its rank,
ŝ, is asymptotically greater than or equal to s (see the proof of Theorem 5). Furthermore,
in practice, we only have access to ft, which converges to f̂ ′

τ . Therefore, we recommend
computing the singular values of ∇nft and setting ŝ to the number of singular values above
a certain threshold, multiplied by the trace norm. This is the choice we use in practice in
the numerical experiments in Section 5.2, although in the statistical analysis in Section 4
we consider ŝ = rank cov(∇nf̂τ ).

3.4 Computational Considerations

The computational complexity of Algorithm 1 is O(n3d4), which can be prohibitive in many
scenarios. To enhance computational efficiency, the well-studied Nyström approximation
[Drineas and Mahoney, 2005] can be employed. This technique replaces the minimisation
over the space span{kxi , (∂ak)xi | i ∈ [n], a ∈ [d]} by minimisation over span{kxi | i ∈ Sp}
for some set Sp ⊂ [n] of cardinal p ≤ n. As p increases with the sample size n, the span
span{kxi | i ∈ Sp} converges to H, the closure of span{kx | x ∈ support ρX}.

Furthermore, as demonstrated in Rudi et al. [2015], by choosing p := nζ log(n) with ζ ∈
(0, 1] (depending on the RKHS and the regularity of the solution) and using sub-sampling
to select Sp, the sample complexity is preserved up to a constant factor. This approach
effectively reduces the computational cost of training from O(n3d4) to O(p2nd2), which
simplifies to O(n1+2ζ log(n)2d2 +d3). Additionally, the storage requirements decrease from
O(n2d2) to O(nd + p2), equating to O(nd + n2ζ log(n)2).

4 Statistical Properties
In this section, we discuss the statistical properties of the estimators computed by KT-
NGrad, that is the consistency of f̂τ in its estimation of f∗ and P̂ in its estimation of
the underlying feature space P and its dimension s.

4.1 Estimation of f ∗

The estimators f̂τ , P̂ , and ŝ exist whether or not f∗ belongs to H. However, most of
our theoretical results hold only in the well-specified setting, except consistency of the
expected risk without explicit rates.

Assumption 4 (Well-Specified Model). The model is well-specified: f∗ ∈ H.
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Chapter 2. Trace Norm Penalty on Sample Matrix of Gradients

Nonetheless, we believe our results could be extended, especially for well-chosen regular
kernels such thatH is dense in (H1(ρX), ∥·∥H1(ρX)). In particular, if the kernel is universal,
i.e., H is dense in (L2(ρX), ∥ · ∥L2(ρX)) (see Appendix B), then inff∈HR(f) = R(f∗), and
we can achieve consistent estimation in the L2(ρX) norm. We provide most results as
convergence in probability and leave explicit bounds for future work, which should follow
from standard arguments [Caponnetto and De Vito, 2007]. By adapting the proof from
Rosasco et al. [2013] to our penalty, we achieve consistency of the expected risk with the
square loss.

Theorem 4 (Convergence of Expected Risk). Under Assumptions 3 and 4, for any η ∈
(0, 1], with probability at least 1− η,

R(f̂τ )− inf
f∈H
R(f) ≤ C1

(
1√
n

( 1√
τν

+ 1
)2

+
√

τ

ν

d5/4

n1/4

)
log 6 + 2d

η

+τ
(
ν∥f∗∥2H + 2∥∇f∗∥∗

)
,

where C1 does not depend on n, d, τ, ν, or f∗. Under Assumption 3,

R(f̂τn) P→ inf
f∈H
R(f)

for any positive sequence (τn)n∈N such that τn → 0 and (
√

nτn)−1 → 0 as n→∞.

In the well-specified case, it is notable that the rate of convergence does not depend
on d in the powers of n, which is typical of well-specified models in RKHS. Hence we
avoid the curse of dimensionality [Bellman, 1966] but at the cost of a strong assumption
on the function f∗. The dependence on n1/4 (compared to the usual n1/2) appears in the
estimation of the trace norm penalty in our proofs because we did not make additional
assumptions on the smallest eigenvalue of cov(∇f∗) to remain general.

To obtain results on the estimation of P , we achieve consistency in the H-norm, as
shown in Lemma 7 in Appendix D, in a similar manner to Rosasco et al. [2013].

4.2 Estimation of the Underlying Subspace P

As discussed in Section 2, we cannot recover P exactly, as there may be multiple pairs
(g∗, P ) that satisfy g∗(P T ·) = f∗. The estimator P̂ is defined as the eigenvectors of
cov(∇nf̂τ ) associated with non-zero eigenvalues, i.e., the first ŝ = rank cov(∇nf̂τ ) eigen-
vectors. If s is known, P̂s is compose of the s leading eigenvectors.

To measure the error between two projectors P and Q, where the projections matrices
are ΠP = P (P T P )−1P T and ΠQ = Q(QT Q)−1QT , we use the Frobenius norm, as in
Dalalyan et al. [2008]

∥ΠP −ΠQ∥2F . (2.5)

However, we are also interested in safe filters, i.e., those where the image of ΠP is
included in that of ΠQ. Therefore, we define the following error, combining Xia et al.
[2002] and Rosasco et al. [2013]

∥ΠP (Id −ΠQ)∥2F . (2.6)

If we have a safe filter (i.e., no information is lost), the error is 0. In the worst case,
when all information is lost (i.e., ΠQ = 0), the error equals s. Note that this error does
not penalise P̂ with higher ŝ; in fact, the error is 0 for any matrix Q of rank d.
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In Appendix D, we use the consistency in the H-norm (Lemma 7) to establish the
consistency of cov(∇nf̂τ ) as an estimator of cov(∇f∗) (Lemma 8). This leads to the
consistency of the eigenvectors (Lemma 9). Consequently, if the subspace dimension s
is known, the Frobenius error converges to zero. If s is unknown, using the estima-
tor ŝ = rank cov(∇nf̂τ ) and the property that rank is lower semi-continuous ensures an
asymptotically safe filter.

Theorem 5 (Convergence of Subspace Estimator). Under Assumptions 1, 2, 3, and 4,
for any positive sequence (τn)n∈N such that τn → 0 and (

√
nτ2

n)−1 → 0 as n→∞, we have

∥ΠP −ΠP̂s
∥2F

P→ 0 and ∥ΠP (Id −ΠP̂ )∥2F
P→ 0.

A stronger result would be to precisely estimate the projection onto P , achieving
a small Frobenius norm ∥ΠP − ΠP̂ ∥

2
F . For this to hold, we need ŝ

P→ s. However,
in the literature on low-rank matrix estimation, it is well-documented that square loss
minimisation using the naive trace norm penalty can be inconsistent in certain cases
[Bach, 2008], highlighting the need for an adaptive version of the method.

4.3 Adaptive Method for Consistent Dimension Estimation

To enhance the consistency of our method in estimating the underlying subspace dimen-
sion, we introduce an adaptive version of KTNGrad, inspired by transformations in the
Lasso framework [Zou, 2006] and low-rank matrix estimation [Bach, 2008].

The process begins by obtaining the ridge estimator f̂R, defined as

f̂R = arg min
f∈H

R̂ (f) + νR∥f∥2H,

where, according to the representer theorem, f̂R can be expressed as f̂R = ∑n
i=1

1
nα

(i)
R kxi ,

with αR = (K + νRIn)−1Y ∈ Rn and K defined in Definition 1.
Next, we compute the covariance matrix of the gradients cov(∇nf̂R), which is given

by (Z̃αR)T Z̃αR/n, where Z̃ is defined in Definition 1. The eigenvalue decomposition
of this matrix yields cov(∇nf̂R) = VR diag(sR)V T

R , with VR ∈ Rd×d. We then define a
diagonal scaling matrix Γ = VR diag(sR)−γV T

R for some γ ∈ (0, 1]. The adaptive penalty
is introduced by replacing ∥∇nf∥∗ with ∥∇nfΓ∥∗, leading to the adaptive estimator

f̂A
τ = arg min

f∈H

(
R̂τ (f) := R̂ (f) + τ

(
ν∥f∥2H + 2∥∇nfΓ∥∗

))
.

The matrix P̂ A is then composed of the eigenvectors corresponding to the non-zero eigen-
values of cov(∇nf̂A

τ ), and ŝA := rank cov(∇nf̂A
τ ) provides the estimated dimension.

The rationale behind this adaptive approach lies in leveraging the consistent estimation
properties of f̂R. Since f̂R already provides a consistent estimator of f∗, the eigenpairs of
cov(∇nf̂R) can reliably approximate those of cov(∇f∗). The new adaptive penalty which
uses these eigenpairs through Γ further enhances this by penalising smaller eigenvalues
more heavily, effectively pushing them toward zero.

This adaptive method mirrors the strategy used in reweighted ℓ1 algorithms [Candès
et al., 2007], which iteratively adjust penalties to better approximate a concave objective.
In this case, the adaptive procedure can be seen as a single step of such an algorithm,
making it both practical and theoretically sound. The adaptive method can be combined
with the Nyström approximation to improve computational costs.
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The theoretical results from the original method can be seamlessly adapted to this new
framework by substituting W with WΓ. This modification ensures that the convergence
properties and consistency results remain intact. The only more involved adjustment re-
quires adapting the consistency result in the L2(ρX) norm (Theorem 4) to accommodate
the new penalty structure. However, achieving stronger consistency results, such as accu-
rate rank estimation as demonstrated in Bach [2008], would require further development.

5 Numerical Experiments
In this section, we discuss the empirical properties of KTNGrad. The technical details of
the experiments are available in Appendix F. The Python implementation of KTNGrad
is fully integrated with Scikit-learn [Pedregosa et al., 2011], allowing for easy incorporation
into standard machine learning workflows. The complete source code, including scripts
for replicating the experiments, can be found at https://github.com/BertilleFollain/
KTNGrad. We always consider KTNGrad with the Gaussian kernel.

We evaluate the performance using three key metrics: the R2 score for prediction
performance, the feature learning score and the dimension score.

R2 score. This is measured by the R2 coefficient of determination, a widely recognised
statistic in regression analysis [Wright, 1921]. The R2 value ranges from −∞ to 1, where
1 indicates perfect prediction, 0 means the model is equivalent to using the mean of the
target values, and negative values suggest the model performs worse than this baseline.
The R2 score is defined as

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2 ,

where yi are the true values, ŷi are the predicted values, ȳ is the mean of the true values,
and n is the number of samples. We can also evaluate the R2 score on the test set.

Feature learning score. This score, ranging from 0 to 1, evaluates the model’s ability
to identify the true feature space, which is represented by the matrix P ∈ Rd×s. The score
is relevant when all features are equally important and is computed as follows: first, the
feature matrix P̂s is estimated by extracting the leading s eigenvectors from cov∇nf̂τ . We
then calculate the projection matrices πP̂s

and πP , and define the score as

Feature score = 1−
∥πP − πP̂s

∥2F
normalisation ,

where the normalisation term is 2s if s ≤ nfeatures/2, and 2d− 2s otherwise. When d = k,
the score is defined as 1.

Dimension score. This metric assesses the accuracy of the model in estimating the true
dimensionality of the feature space and ranges from 0 to 1. The dimension ŝ is determined
by counting the significant eigenvalues of cov∇nf̂τ using a threshold. The dimension score
is then given by

Dimension score = 1− |ŝ− s|
denominator ,

where the denominator is d− s if s ≤ d/2, and s otherwise.
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5. Numerical Experiments
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Figure 2.1: Primal, dual and scores across iterations during the optimisation procedure.

5.1 Optimisation Behaviour

In this experiment, we present the optimisation behaviour of KTNGrad and justify the
claim made in Section 3.2 that the optimisation procedure converges in few iterations. We
train KTNGrad on a single dataset and present the primal and dual value as well as the
dual gap across training in the first sub-figure of Figure 2.1. In the second one, we display
the R2 score on the training set and the test set across iterations.

The synthetic data set has n = 200 samples and d = 10 features. The features were
generated uniformly from [−1, 1]d. We sample P uniformly from the set of d×d orthogonal
matrices before truncating it to size d×s where s = 2. The target values y were generated
as y =

∣∣∣∑s
a=1 sin

(
P ⊤X

)
a

∣∣∣ + ϵ, where ϵ ∼ N (0, 0.12) represents Gaussian noise. An
independent test set of ntest = 100 samples was generated similarly.

We observe that the dual gap closes rapidly, meaning that we have reached the unique
minimiser of our convex minimisation problem in very few iterations. This compensates the
fact that each iteration is quite computationally costly. In terms of prediction performance,
the regularisation benefits the test error which is shown to improve across the iterations.

5.2 Performance dependency on sample size n and data dimension d

We now compare the performance of different estimators against varying sample size and
data dimension. The estimators we consider are KTNGrad with the Gaussian kernel,
KRR (basic kernel ridge regression with the Gaussian kernel), PyMave and KTNGrad,
retrained. PyMave is simply MAVE from Xia et al. [2002] adapted to Python and
combined with the regressor MARS from Friedman [1991] as MAVE is not a predic-
tion method. To fairly compare the prediction performance which stems from the feature
learning, we also consider KTNGrad, retrained, which consists in a MARS regres-
sor trained on the features learnt by KTNGrad, which are the leading eigenvectors of
cov(∇nf̂τ ), with their number chosen using a threshold, see Appendix F.

The datasets were all generated as follows. The input data X was uniformly sampled
from [−1, 1]d. The projection matrix P was sampled uniformly from the orthogonal group
before being truncated to contain s = 3 projections. The target values were generated as
y =

∣∣∣∑s
a=1 sin

(
P ⊤X

)
a

∣∣∣+ ϵ, where ϵ represents Gaussian noise with a standard deviation
of 0.15. An independent test set comprising ntest = 201 samples was generated similarly.
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Figure 2.2: Performance with varying sample size n.
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Figure 2.3: Performance with varying data dimension d.

Each experimental setup was repeated 10 times to ensure statistical reliability, and the
results were averaged across these repetitions.

In Figure 2.2, the dimension d is fixed at 10, while the sample size n varies from 10
to 175. The results show that KRR performs poorly in terms of the R2 score. Mean-
while, PyMave struggles with small sample sizes but outperforms other methods once a
sufficient number of samples is reached, performing similarly to KTNGrad, retrained.
This behaviour is expected, as the second sub-figure illustrates that both PyMave and
KTNGrad exhibit comparable performance in feature learning and dimension estima-
tion, with KTNGrad having a slight edge. Additionally, the significant improvement in
prediction performance due to retraining KTNGrad highlights a well-known limitation of
regularised methods: the regularisation necessary for effective feature or variable selection
can negatively impact the quality of predictions [Hastie et al., 2001, Section 3.8.5], as seen
in the basic version of KTNGrad.

In Figure 2.3, the sample size n was fixed to 175 while the data dimension d varied
from 3 to 35. Similarly to the previous figure, we observe that the performance of KRR
is inferior to the others. On the second sub-figure, we observe that the features are
learnt similarly by KTNGrad and PyMave (notice however that PyMave did not run
successfully when d = s = 3). Nonetheless the threshold method we have chosen to
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determine the dimension for KTNGrad is not as effective as that of PyMave, which
also explains the discrepancy in terms of R2 score between KTNGrad, retrained and
PyMave. The basic version of KTNGrad is not so robust to high dimension as PyMave,
but this flaw might be alleviated by using KTNGrad, retrained with a better dimension
selection technique.

6 Conclusion
In this chapter, we introduced a novel method for joint linear feature learning and function
estimation by incorporating a trace norm penalty on the sample matrix of gradients.
Leveraging the unique properties of reproducing kernel Hilbert spaces (RKHS) which
include their own partial derivatives, we developed a computationally feasible approach
based on convex optimisation. Our method, KTNGrad, avoids strong assumptions about
the data distribution and demonstrates convergence to the minimal risk at a rate that does
not depend exponentially on the data dimension, an expected outcome in well-specified
settings within RKHS. Moreover, KTNGrad effectively recovers the underlying features
in a safe filter manner.

The numerical experiments showed that KTNGrad is competitive with state-of-the-
art methods like MAVE in learning features in some settings. However, several challenges
remain. Our statistical analysis relies on the strong assumption that the regression func-
tion belongs to the RKHS. Additionally, KTNGrad performs less well than MAVE in
selecting the dimension of the underlying feature space and is computationally expensive.
Future work could include deriving explicit convergence rates for feature learning and
studying misspecified settings. The consistency in dimension estimation of the adaptive
method could also be studied. Finally, extending our framework to support additional loss
functions would broaden its applicability to a wider range of problems.

However, the method is inherently slightly flawed, a critique that is valid for the work
of Rosasco et al. [2013] as well, due to the choice of function space. Indeed, we have
made two different assumptions that are not actually compatible when considered with
the usual kernels: first that f∗ belongs to the regular RKHS H and that the multi-index
model is verified, i.e., that there exists g∗ and P such that f∗ = g∗(P ⊤·). Indeed, in our
work and that of Rosasco et al. [2013], the Gaussian kernel was taken as an example, even
though f∗ belonging to the corresponding RKHS requires in particular that all first-order
derivatives of f∗ are square integrable w.r.t the Lebesgue measure on Rd [Bach, 2024,
Chapter 7]. In the basic case of one relevant variable f∗(x) = g∗(x(1)), this means that∫
Rd

(
(g∗)′(x(1))

)2dx(1) . . . dx(d) <∞, which is not possible except in edge cases.
While the two assumptions can be true simultaneously if they are only considered

approximately, this limits the appropriateness and efficiency of the method. Despite these
issues, this work represents a promising step toward developing methods for multi-index
models using the regularised empirical risk minimisation framework. In the next chapters,
we will consider different function spaces that are better adapted to feature learning.
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Appendix
A Notations and Definitions
We first (re-)introduce some notations used in the main text and the appendix in Table 2.1.

Table 2.1: Notations of the main text.

Symbol Definition Space
(X, Y ) factor/response pair of random variables X × Y

n number of data pairs in training set N
d X ⊂ Rd N
ρ Joint distribution of (X, Y )

ρX Marginal distribution of X
L2(ρX) {f : X → Y,

∫
X f(x)2dρX < +∞}

H1(ρX) {f ∈ L2(ρX), ∀a ∈ [d], ∂f(x)/∂x(a) ∈ L2(ρX)}
H Reproducing kernel Hilbert space
k Reproducing kernel associated to H X → X

K1 ∀x ∈ X , k(x, x) ≤ K2
1 R+

K2 ∀x ∈ X , ∂k(s,t)
s(a)t(a) |s=x,t=x ≤ K2

2 R+

M Y ⊂ [−M, M ] R+

cov∇f EρX

(
∇f(x)∇f(x)T

)
R

cov∇nf 1
n

∑n
i=1∇f(xi)∇f(xi)T R

∥∇f∥∗ tr
(√

cov∇f
)

R
∥∇nf∥∗ tr

(√
cov∇nf

)
R

τ Penalisation parameter R+∗

ν Hyper-parameter R+∗

ϵ Hyper-parameter R+∗

δ Hyper-parameter R+∗

R(f) EρX

(
(y − f(x))2

)
R

Rτ (f) R(f) + τ(ν∥f∥2H + 2∥∇f∥∗) R
R̂(f) 1

n

∑n
i=1 (yi − f(xi))2 R

R̂τ (f) R̂(f) + τ(ν∥f∥2H + 2∥∇nf∥∗) R
R̂′

τ (f) R̂(f) + τ
(
ν∥f∥2H + 2 tr

(√
∇nfT∇nf + ϵId

))
R

f∗ arg minf∈HR(f) H
fτ arg minf∈HRτ (f) H
f̂τ arg minf∈H R̂τ (f) H
f̂ ′

τ arg minf∈H R̂′
τ (f) H

β∗ See Equation (2.3) Rn(d+1)

β′
∗ See Equation (2.4) Rn(d+1)

βt Sequence produced by Algorithm 1 Rn(d+1)

ft function represented by any θt such that V 1/2θt = βt H
s rank cov(∇f∗) N
ŝ rank cov(∇nf̂τ ) N
P Projection to estimate, see Assumption 1 Rd×s

P̂s Leading first s eigenvectors of cov∇nf̂τ Rd×ŝ

P̂ Eigenvectors of cov∇nf̂τ for strictly positive eigenvalues Rd×ŝ
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We then give the precise form of the matrices used in Equation (2.3) and in Algorithm 1.
Definition 1 (Kernel Matrices). K is the classical (rescaled) kernel matrix

K := 1
n

(k(xi, xj))i,j ∈ Rn×n.

For all a ∈ [d],
Za := 1

n

(
∂k(x, xj)

∂x(a) |x=xi

)
i,j
∈ Rn×n,

combined to give
Z = (ZT

1 , . . . , ZT
d ) ∈ Rn×nd.

For all a, b ∈ [d],

La,b := 1
n

(
∂2k(s, t)
∂s(a)∂t(b) |s=xi,t=xj

)
i,j

∈ Rn×n,

combined to give
La := (La,1, . . . , La,d) ∈ Rn×nd

and
L := (LT

1 , . . . , LT
d )T ∈ Rnd×nd.

Combining K, Z, L, we obtain

Ũ := (K, Z) ∈ Rn×n(d+1)

V :=
(

K Z
ZT L

)
∈ Rn(d+1)×n(d+1)

W̃a := (Za, La) ∈ Rn×n(d+1), ∀a ∈ [d]
W̃ := (W1, . . . , Wd) ∈ Rn×d×n(d+1)

W is obtained by stacking the Wa matrices along the second dimension.
For the adaptive version of the method, we also need

Z̃ := (Za, . . . , Zd) ∈ Rn×d×n,

where the Za are stacked along the second dimension.
Since V is positive definite as the Gram matrix of {kxi , (∂ak)xi | i ∈ [n], a ∈ [d]}, it has

a square root V 1/2 ∈ Rn(d+1)×n(d+1). We define U ∈ Rn×n(d+1) as the matrix consisting of
the first n rows of V 1/2. For W ∈ Rn×d×n(d+1), we define W:,:,k ∈ Rn×d as the k-th column
of V 1/2 with the first n elements removed and then reshaped into an n× d matrix. More
simply, this can be written as Wi,a,k := V

1/2
i+na,k.

We now provide the characterisation of the matrices K, Z, and L for the Gaussian
kernel with parameter σ, which is the practical choice we recommend with σ the median
of the euclidean distances between the data points.
Definition 2 (Gaussian Kernel Matrices). For any x, y ∈ Rd, the Gaussian kernel is
defined as k(x, y) = exp

(
−∥x−y∥2

2
2σ2

)
. Consequently, the matrices are given by

K =
(

1
n

exp
(
−∥xi − xj∥22

2σ2

))
i,j

Za =

−x
(a)
i − x

(a)
j

σ2 Ki,j


i,j

, ∀a ∈ [d],
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La,b =

−(x(a)
i − x

(a)
j )(x(b)

i − x
(b)
j )

σ4 Ki,j


i,j

, ∀a, b ∈ [d], a ̸= b,

La,a =

−
(
(x(a)

i − x
(a)
j )2 − σ2

)
σ4 Ki,j


i,j

, ∀a ∈ [d].

B Reproducing Kernel Hilbert Spaces
We recall that (H, ∥ · ∥H) is the unique Hilbert space associated to a symmetric positive
definite kernel k : X × X 7→ R, such that kx := k(x, ·) ∈ H and ∀f ∈ H, f(x) = ⟨f, kx⟩H.
This is the reproducing property [Aronszajn, 1950]. k being a positive definite function
means that for any n ∈ N∗, (xi)i∈[n] ∈ X n, the matrix K = (k(xi, xj))i,j∈[n] ∈ Rn×n is
positive definite. We further remark that H is the closure of the set {kx, x ∈ X} in H,
meaning that every function in H can be written as the limit when l grows of quantities
of the form ∑l

j=1 αjkxj where αj ∈ R and xj ∈ X .
One of the key results of reproducing kernel Hilbert space theory is the representer

theorem [Wahba, 1990], which shows that many estimators based on finite data sets in
RKHS can actually be written as a linear combination of the kxi , where the xi are the
data points.

However in our setting, the estimator is defined as the argmin of a quantity mak-
ing use of gradients. From Zhou [2008, Theorem 1], because k is at least twice dif-
ferentiable, we know that for any x ∈ X , (∂ak)x also belongs to H. Moreover ∀f ∈
H, ∂f(x)/∂x(a)⟨f, (∂ak)x⟩H. First, this allows for efficient computation of the gradients,
instead of using finite differences which are computationally costly and unstable. Addi-
tionally, this means that an equivalent of the representer theorem (Lemma 1) is available
for f̂τ too, but using a linear combination of both the kxi and the (∂ak)xi , for a ∈ [d] and
xi the data points.

Proof of Lemma 1. Let S := span{kxi , (∂ak)xi |a ∈ [d], i ∈ [n]}. Since S is a closed sub-
space of H, we can write any function f of H as f = f// +f⊥ with f// ∈ S and ⟨f⊥, g⟩ = 0
for any g ∈ S. We can then rewrite Equation (2.1) as

f̂τ = arg min
f∈H,f=f//+f⊥

1
n

n∑
i=1

(
yi − f//(xi)

)2
+ τν∥f//∥2H + τν∥f⊥∥2H + 2τ∥∇nf//∥∗,

which is clearly minimised when f⊥ = 0. This yields that f̂τ belongs to S, hence the
lemma.

We remark that Assumptions 3.1 and 3.2 imply that for all x ∈ X , ∥kx∥H ≤ K1 and
∥(∂ak)x∥H ≤ K2. Consequently, for any f ∈ H and x ∈ X , we have f(x) = ⟨f, kx⟩H ≤
∥f∥H∥kx∥H ≤ ∥f∥HK1 and ∂f(x)/∂x(a) = ⟨f, (∂ak)x⟩H ≤ ∥f∥H∥(∂ak)x∥H ≤ ∥f∥HK2.
These inequalities are used frequently in the proofs.

Furthermore, this implies thatH ⊂ H1(ρX), since for any f ∈ H, the partial derivatives
∂f/∂x(a) = ⟨f, (∂ak)x⟩ exist and are in L2(ρX), given that

∫
X

(
∂f/∂x(a)

)2
dρX ≤ ∥f∥2HK2

2 .
Universal kernels, such as the Gaussian kernel and the Matérn kernels, have the prop-

erty that the associated RKHS H is dense in L2(ρX) with respect to the L2(ρX) norm
[Sriperumbudur et al., 2011], provided that X is compact. This density property ensures
that functions in H can approximate any function in L2(ρX) arbitrarily well.
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C. Optimisation Procedure from Section 3

C Optimisation Procedure from Section 3
Section 3 focuses on the methodology and presents results related to the optimisation
procedure. We provide theoretical results that were instrumental in developing the pseudo-
code for Algorithm 1, as well as proving the parametric formulation and convergence
properties discussed in the main text.

The optimisation problem to solve is given by Equation (2.4), but with the penalty
term rewritten using Equation (3.2), as follows

(β′
∗, Λ∗) = arg min

β∈Rn(d+1)

Λ∈Rd×d, Λ≻0

1
n
∥Y −Uβ∥22+ τν

n
∥β∥22+ τ√

n

(
tr((Wβ)Λ−1(Wβ)T )+tr(Λ+nϵΛ−1)

)
.

C.1 Useful Lemmas for the Pseudo-Code of Algorithm 1

We provide an explicit formula for the minimiser of Equation (C) when either Λ or β
is fixed. This enables us to present the alternating optimisation procedure proposed in
Algorithm 1.

Lemma 4 (Closed-Form Updates). Let Λ ∈ Rd×d be fixed. If we define β(Λ) ∈ Rn(d+1)

by

β(Λ) = arg min
β∈Rn(d+1)

1
n
∥Y − Uβ∥22 + τν

n
∥β∥22 + τ√

n

(
tr
(
(Wβ)Λ−1(Wβ)T

)
+ tr(Λ + nϵΛ−1)

)
,

then
β(Λ) =

(
UT UτνIn(d+1) +

√
nτ(WΛ−1

t W T )
)−1

UT Y.

Conversely, if β is fixed and we define Λ as follows

Λ(β) = arg min
Λ∈Rd×d,Λ≻0

1
n
∥Y −Uβ∥22 + τν

n
∥β∥22 + τ√

n

(
tr
(
(Wβ)Λ−1(Wβ)T

)
+ tr(Λ + nϵΛ−1)

)
,

then
Λ(β) =

√
(Wβ)T (Wβ) + nϵId.

Proof of Lemma 4. Let Λ be fixed. We can simplify the definition of β(Λ) to

β(Λ) = arg min
β∈Rn(d+1)

1
n
∥Y − Uβ∥22 + τν

n
∥β∥22 + τ√

n
tr
(
(Wβ)Λ−1(Wβ)T

)
.

We note that tr
(
(Wβ)Λ−1(Wβ)T

)
= βT (WΛ−1W T )β. Therefore, the expression

within the arg min is differentiable with respect to β, and setting the derivative to zero
gives

1
n

(
UT U + τνIn(d+1) +

√
nτ(WΛ−1W T )

)
β(Λ)− 1

n
UT Y = 0,

yielding the final equation

β(Λ) =
(
UT U + τνIn(d+1) +

√
nτ(WΛ−1W T )

)−1
UT Y.
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Now, if β is fixed, we can simplify the definition of Λ(β) to

Λ(β) = arg min
Λ∈Rd×d

Λ≻0

tr
(
(Wβ)Λ−1(Wβ)T

)
+ tr(Λ + nϵΛ−1).

We then set the derivative to zero, yielding

−(Wβ)T (Wβ)Λ−2 + Id − nϵΛ−2 = 0.

Reorganising, we obtain
Λ(β) =

√
(Wβ)T (Wβ) + nϵId,

which is the desired quantity.

We provide the duality gap condition used to halt the optimisation procedure, following
Bach et al. [2012, Section 1.4].

Lemma 5 (Duality Gap). For the primal problem

β′
∗ = arg min

β∈Rn(d+1)

1
n
∥Y − Uβ∥22 + τν

n
∥β∥22 + 2τ√

n
tr
(√

(Wβ)T Wβ + nϵId

)
,

the dual problem is

max
Z∈Rn×d,∥Z∥op≤2τ/

√
n

( 1
n
∥Y ∥22 −

1
n

(
B + n

2 tr(ZT W )
)T

A−1
(

B + n

2 tr(ZT W )
)

−
√

ϵ tr
(√

4τ2Id − nZT Z

))
,

with

A := UT U + τνIn(d+1),

B := UT Y,

tr(ZT W ) :=
(
tr(ZT W:,:,1), . . . , tr(ZT W:,:,n(d+1))

)T
∈ Rn(d+1).

An admissible Z for any β can be computed using

Z(β) = min
(

1,
2τ√

n∥Zopt(β)∥op

)
Zopt(β),

with Zopt(β) being any solution to tr(Zopt(β)T W ) = 2
n(Aβ −B).

The dual gap used in Algorithm 1 is then equal to

1
n
∥Y − Uβ∥22 + τν

n
∥β∥22 + 2τ√

n
tr
(√

(Wβ)T Wβ + nϵId

)
−
(

1
n
∥Y ∥22 −

1
n

(
B + n

2 tr(Z(β)T W )
)T

A−1
(

B + n

2 tr(Z(β)T W )
))

+
√

ϵ tr
(√

4τ2Id − nZ(β)T Z(β)
)

. (2.7)
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Proof of Lemma 5. The primal problem can be rewritten as

min
β∈Rn(d+1)

1
n
∥Y ∥22 −

2
n

BT β + βT Aβ

n
+ 2τ√

n
tr
(√

(Wβ)T Wβ + nϵId

)
.

We add the constraint ∇ = Wβ, yielding

min
β∈Rn(d+1),∇∈Rn×d,∇=W β

1
n
∥Y ∥22 −

2
n

BT β + βT Aβ

n
+ 2τ√

n
tr
(√

(Wβ)T Wβ + nϵId

)
.

With the Lagrangian multiplier Z, we obtain

max
Z∈Rn×d

min
β∈Rn(d+1),∇∈Rn×d

1
n
∥Y ∥22 −

2
n

BT β + βT Aβ

n

2τ√
n

tr
(√
∇T∇+ nϵId

)
+ tr

(
ZT (∇−Wβ)

)
,

or more simply

max
Z∈Rn×d

(
min

β∈Rn(d+1)

1
n
∥Y ∥22 −

2
n

BT β + βT Aβ

n
− tr

(
ZT (Wβ)

)
+ min

∇∈Rn×d

( 2τ√
n

tr
(√
∇T∇+ nϵId

)
+ tr

(
ZT∇

)))
.

The first minimum is equal to

min
β∈Rn(d+1)

1
n
∥Y ∥22 −

2
n

BT β + βT Aβ

n
− tr(ZT W )T β,

which, when differentiated, yields

1
n
∥Y ∥22 −

1
n

(
B + n

2 tr(ZT W )
)T

A−1
(

B + n

2 tr(ZT W )
)

.

For the second minimum, we have

min
∇∈Rn×d

2τ√
n

tr
(√
∇T∇+ nϵId

)
+ tr(ZT∇),

which, using the singular value decomposition of Z and ∇, is equal to

−
√

ϵ tr
(√

4τ2Id − nZT Z

)
if ∥Z∥op ≤ 2τ and −∞ otherwise.

The dual problem is therefore

max
Z∈Rn×d,∥Z∥op≤ 2τ√

n

1
n
∥Y ∥22 −

1
n

(
B + n

2 tr(ZT W )
)T

A−1
(

B + n

2 tr(ZT W )
)

−
√

ϵ tr
(√

4τ2Id − nZT Z

)
.

The duality gap for fixed β and Z can be computed. At optimum, there is a link
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between β and Z, which we obtained when differentiating,

β′
∗ = A−1

(
B + n

2 tr(ZT
∗ W )

)
or tr(ZT

∗ W ) = 2
n

(Aβ′
∗ −B),

where Z∗ is the minimiser of the dual problem.
We can obtain an admissible Z for any β by using

Z(β) = min
(

1,
2τ

∥Zopt(β)∥op
√

n

)
Zopt(β),

with Zopt(β) any solution to

tr(Zopt(β)T W ) = 2
n

(Aβ −B).

We have Z(β′
∗) = Zopt(β′

∗) = Z∗. We can obtain Zopt = ∑n(d+1)
i=1 ciW:,:,i by solving

Cc = 2
n

(Aβ −B),

with C = (tr(W T
:,:,iW:,:,j))i,j ∈ Rn(d+1)×n(d+1), c ∈ Rn(d+1).

C.2 Proofs of Section 3

In this section, we present the proofs of Lemma 2 and Lemma 3, which are used to
respectively characterise the estimator in a parametric way and the behaviour of the
optimisation procedure. We remark that the proof of Lemma 1 is in Appendix B.

Proof of Lemma 2. Lemma 1 states that f̂τ ∈ S := span{kxi , (∂ak)xi | a ∈ [d], i ∈ [n]}.
Therefore, Equation (2.1) has the same solution as

f̂τ = arg min
f∈S

1
n

n∑
i=1

(yi − f(xi))2 + τν∥f∥2H + 2τ∥∇nf∥∗.

We can rewrite these quantities for a function f ∈ S by expressing f as

f =
n∑

i=1

1
n

θ(i)kxi +
n∑

i=1

d∑
a=1

1
n

θ(i+na)(∂ak)xi ,

using Ũ , V, W̃ defined in Definition 1, the vector of responses Y , and the coefficients θ0 :=
(θ(1), . . . , θ(n))T , θ1 := (θ(1+n), . . . , θ(2n), . . . , θ(1+dn), . . . , θ(n(d+1)))T , and θ = (θT

0 , θT
1 )T ∈

Rn(d+1).
First, for the data fitting term, ∀i ∈ [d], f(xi) = (Kθ0)(i) + (Zθ1)(i), therefore

1
n

n∑
i=1

(yi − f(xi))2 = 1
n
∥Y −Kθ0 − Zθ1∥22 = 1

n
∥Y − Ũθ∥22.

For the H-norm, we have

∥f∥2H = θT
0 Kθ0

n
+ θT

1 Lθ1
n

+ 2θT
0 Zθ1
n

= θT V θ

n
.
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Finally, for the trace norm, ∀a ∈ [d], i ∈ [n], ∂f
∂x(a) (xi) = (Zaθ0)(i)+(Laθ1)(i). Therefore,

since ∇nf =
(

∂f
∂x(a) (xi)/

√
n
)

i,a
, we have ∇nf = W̃θ/

√
n, yielding

∥∇nf∥∗ = ∥W̃θ∥∗/
√

n.

We then have the following equality for any f ∈ S

1
n

n∑
i=1

(yi − f(xi))2 + τν∥f∥2H + 2τ∥∇nf∥∗ = ∥Y − Ũθ∥22
n

+ τνθT V θ

n
+ 2τ√

n
∥W̃θ∥∗,

and writing θ∗ for the coefficients of f̂τ in S, we have

θ∗ ∈ arg min
θ∈Rn(d+1)

∥Y − Ũθ∥22
n

+ τνθT V θ

n
+ 2τ√

n
∥W̃θ∥∗.

Now, with the change of variable β = V 1/2θ, which is possible since V is positive
semi-definite, we get

β∗ = arg min
β∈Rn(d+1)

∥Y − Uβ∥22
n

+ τν

n
∥β∥22 + 2τ√

n
∥Wβ∥∗,

because Ũθ = Uβ, θT V θ = ∥β∥22, and W̃θ = Wβ. The argmin is unique because the
quantity is strongly convex in β.

Proof of Lemma 3. We consider the optimisation problem

(β′
∗, Λ∗) = arg min

β∈Rn(d+1)

Λ∈Rd×d, Λ≻0

1
n
∥Y −Uβ∥22+τν

n
∥β∥22+ τ√

n

(
tr
(
(Wβ)Λ−1(Wβ)T

)
+tr(Λ+nϵΛ−1)

)
.

Since for fixed β, the optimal Λ is
√

(Wβ)T (Wβ) + nϵId, we can change the constraint
on Λ to Λ ⪰ nϵId without altering the solution to the optimisation problem. We then
define

h(β, Λ) := 1
n
∥Y − Uβ∥22 + τν

n
∥β∥22 + τ√

n
tr
(
(Wβ)Λ−1(Wβ)T

)
,

and

g(Λ) := tr(Λ + nϵΛ−1) if Λ ⪰ nϵId

+∞ otherwise.

The problem is now equivalent to

arg min
β∈Rn(d+1),Λ∈Rd×d

h(β, Λ) + g(Λ),

with

H(β) := arg min
Λ∈Rd×d

h(β, Λ) = 1
n
∥Y − Uβ∥22 + τν

n
∥β∥22 + 2τ√

n
tr
(√

(Wβ)T (Wβ) + nϵId

)
,

which fits the setting described in Beck [2015]. We now verify the conditions to apply
Theorem 3.3 from Beck [2015].
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1. Condition [A] is verified because g is a closed and proper convex function, differen-
tiable over its domain.

2. Condition [B] is verified because h is continuously differentiable over Rn(d+1)×dom g.

3. Condition [C] is verified with (note the use of the operator norm ∥ · ∥op and the
infinity norm ∥ · ∥∞)

L := sup
Λ∈Rd×d,Λ⪰nϵId

∥∥∥∥ 1
n

(
UT U + τνIn(d+1) +

√
nτ(WΛ−1W T )

)∥∥∥∥
op

.

L is finite because a rough bound on L is∥∥∥∥ 1
n

(
UT U + τνIn(d+1)

)∥∥∥∥
op

+ d2n3/2τ max
m∈[n],l∈[d],k∈[d]

∥Wm,l,:W
T
m,l,:∥op∥Λ−1∥∞,

and ∥Λ−1∥∞ ≤ d
nϵ .

4. Condition [D] is not needed.

5. Condition [E] is verified because H is strongly convex, so β′
∗ exists, and the min-

imiser Λ∗ is uniquely defined (see Lemma 4). For fixed β or fixed Λ within the
admissible domain, the optimisation problem in the other variable has a minimiser
(see Lemma 4).

We now define the level set

{(β, Λ) ∈ Rn(d+1) × Rd×d | Λ ⪰ nϵId, h(β, Λ) + g(Λ) ≤ h(β0, Λ0) + g(Λ0)},

which is compact because it is closed and bounded (since h is coercive). We also denote
the squared diameter

R2 = max
β,Λ

(
∥β − β′

∗∥22 + ∥Λ− Λ∗∥22 | h(β, Λ) + g(Λ) ≤ h(β0, Λ0) + g(Λ0)
)

.

We can now apply Theorem 3.3 from Beck [2015]. Let (βt, Λt)t≥0 be the sequence
generated by Algorithm 1, then for all t ∈ N∗,

h(βt, Λt) + g(Λt) ≤
3 max

(
h(β0, Λ0) + g(Λ0)− h(β′

∗, Λ∗)− g(Λ∗), LR2)
t

.

We then have that for all β,

H(β) = h(β, Λ(β)) + g(Λ(β)),

where Λ(β) is defined in Lemma 4 and is always in dom g. We also always have Λt = Λ(βt)
by construction. Therefore, we obtain the inequality

H(βt)−H(β′
∗) ≤ 3 max

(
H(β0)−H(β′

∗), LR2)
t

= C

t
,

where
C := 3 max

(
H(β0)−H(β′

∗), LR2
)

. (2.8)
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Using the strong convexity of H, we get

τν

2n
∥βt − β′

∗∥22 ≤ H(βt)−H(β′
∗) ≤ C

t
.

Transposing this inequality to the RKHSH, since H(βt) = R̂′
τ (ft) and H(β′

∗) = R̂′
τ (f̂ ′

τ )
by construction, we get

R̂′
τ (ft)− R̂′

τ (f̂ ′
τ ) ≤ C

t
.

Now, using the strong convexity of R̂′
τ with a constant at least 2τν, we get the in-

equality

τν

4 ∥ft − f̂ ′
τ∥2H ≤

R̂′
τ (ft)
2 + R̂

′
τ (f̂ ′

τ )
2 − R̂′

τ

(
f̂ ′

τ

2 + ft

2

)
≤ R̂

′
τ (ft)− R̂′

τ (f̂ ′
τ )

2 ,

yielding

∥ft − f̂ ′
τ∥H ≤

√
2C

τνt
.

D Consistency of f̂τ from Section 4.1
Section 4.1 deals with the consistent estimation of inff∈HR(f). We also consider the
consistency of the estimation of f∗ = arg minf∈HR(f) in H-norm, as long as f∗ ∈ H, as
stated in Lemma 7 below.

Lemma 6 (Consistency of Trace Norm Penalty). Let r ∈ R+. Then under Assump-
tion 3.2, ∀η ∈ (0, 1],

P

 sup
∥f∥H≤r

|∥∇nf∥∗ − ∥∇f∥∗| ≥

√
2
√

2
n1/4 d5/4rK2

√
log 2d

η

 < η.

Proof of Lemma 6. For any f ∈ H,

|∥∇nf∥∗ − ∥∇f∥∗| =
∣∣∣∣tr(√cov(∇nf)−

√
cov(∇f)

)∣∣∣∣
≤
√

d∥
√

cov(∇nf)−
√

cov(∇f)∥F

≤
√

d
√
∥ cov(∇nf)− cov(∇f)∥∗

(using the Powers–Størmer inequality [Powers and Størmer, 1970])

≤
√

d
√√

d∥ cov(∇nf)− cov(∇f)∥F

≤ d3/4

 d∑
a,b=1

(
n∑

i=1

∂f

∂x(a) (xi)
∂f

∂x(b) (xi)− EρX

∂f

∂x(a) (x) ∂f

∂x(b) (x)
)2
1/4

.

We then take the supremum over functions such that ∥f∥H ≤ r and apply standard
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concentration inequalities [Pinelis and Sakhanenko, 1986]. For each a, b ∈ [d],

sup
∥f∥H≤r

∣∣∣∣∣
n∑

i=1

∂f

∂xa
(xi)

∂f

∂xb
(xi)− EρX

∂f

∂xa
(x) ∂f

∂xb
(x)
∣∣∣∣∣ ≤ 2

√
2√

n
r2K2

2 log 2
η

with probability at least 1− η, η ∈ (0, 1]. Applying this d2 times yields

sup
∥f∥H≤r

|∥∇nf∥∗ − ∥∇f∥∗| ≤ d5/4

√
2
√

2√
n

r2K2
2 log 2d

η

with probability at least 1− η. Therefore, ∀η ∈ (0, 1],

P

 sup
∥f∥H≤r

|∥∇nf∥∗ − ∥∇f∥∗| ≥

√
2
√

2
n1/4 d5/4rK2

√
log 2d

η

 < η.

D.1 Proof of Theorem 4

Using Lemma 6, we can now prove the result from the main text on the consistency of the
expected risk of the estimator.

Proof of Theorem 4. We have

R(f̂τ )− inf
f∈H
R(f) ≤

∣∣∣R(f̂τ )−Rτ (fτ )
∣∣∣+Rτ (fτ )− inf

f∈H
R(f),

where Rτ (f) = R(f) + τ
(
ν∥f∥2H + 2∥∇f∥∗

)
and fτ = arg minf∈HRτ (f).

First, we note that

τν∥f̂τ∥2H ≤ R̂τ

(
f̂τ

)
≤ R̂τ (0) = ∥Y ∥2/n ≤M2,

and therefore ∥f̂τ∥H ≤ M√
τν

. Similarly, we get ∥fτ∥H ≤
√
E (y2) /τν ≤ M√

τν
.

For the first term,∣∣∣R(f̂τ )−Rτ (fτ )
∣∣∣ ≤ ∣∣∣R(f̂τ )− R̂(f̂τ )

∣∣∣+ ∣∣∣R̂(f̂τ )−Rτ (fτ )
∣∣∣

≤
∣∣∣R(f̂τ )− R̂(f̂τ )

∣∣∣+ ∣∣∣R̂τ (f̂τ )−Rτ (fτ )
∣∣∣

≤
∣∣∣R(f̂τ )− R̂(f̂τ )

∣∣∣+ ∣∣∣R̂τ (fτ )−Rτ (fτ )
∣∣∣

≤
∣∣∣R(f̂τ )− R̂(f̂τ )

∣∣∣+ ∣∣∣R̂(fτ )−R(fτ )
∣∣∣+ τ |∥∇nfτ∥∗ − ∥∇fτ∥∗|

≤ 2 sup
∥f∥H≤M/

√
τν

∣∣∣R(f)− R̂(f)
∣∣∣+ τ sup

∥f∥H≤M/
√

τν

|∥∇nf∥∗ − ∥∇f∥∗| .

Using Rosasco et al. [2013, Lemma 19] (with η = 3η′/(3 + d)) and Lemma 6 (with
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η = dη′/(3 + d)), we have

∣∣∣R(f̂τ )−Rτ (fτ )
∣∣∣ ≤ 4

√
2√

n
M2

(
K2

1
τν

+ 2K1√
τν

+ 1
)

log 6 + 2d

η′

+τ

√
2
√

2
n1/4 d5/4 M√

τν
K2

√
log 6 + 2d

η′

with probability at least 1− η′.
We can further bound this term by the simpler quantity

∣∣∣R(f̂τ )−Rτ (fτ )
∣∣∣ ≤ (C1

M2
√

n

(
K2

1
τν

+ 2K1√
τν

+ 1
)

+ C2

√
τd5/4MK2
n1/4√ν

)
log 6 + 2d

η′ .

Now for the second term, if Assumption 4 holds, we have that

Rτ (fτ )− inf
f∈H
R(f) = Rτ (fτ )−Rτ (f∗) + τ(ν∥f∗∥2H + 2∥∇f∗∥∗) ≤ τ(ν∥f∗∥2H + 2∥∇f∗∥∗).

Therefore, with probability at least 1− η′,

R(f̂τ )− inf
f∈H
R(f) ≤

(
C1

M2
√

n

(
K2

1
τν

+ 2K1√
τν

+ 1
)

+ C2

√
τd5/4MK2
n1/4√ν

)
log 6 + 2d

η′

+τ
(
ν∥f∗∥2H + 2∥∇f∗∥∗

)
.

Thus, if τn → 0 and (τn
√

n)−1 → 0, thenR(f̂τn)−inff∈HR(f) tends to 0 in probability.
If Assumption 4 does not hold, we still have that Rτn(f̂τn)− inff∈HR(f)→ 0 if τn → 0

as n goes to infinity, which is a standard result in regularisation theory [see Dontchev and
Zolezzi, 2006, Rosasco et al., 2013, Proposition 20]. The condition (τn

√
n)−1 → 0 still

ensures that the first term converges to 0 in probability, yielding the final result.

D.2 Consistency in H-norm

For the results on the estimation of the subspace that follow, we need the estimation of
f∗ by f̂τ to be consistent in the H-norm, which we prove in the lemma below.

Lemma 7 (Consistency in H-Norm). Under Assumption 3 and Assumption 4, for any
positive sequence (τn)n∈N such that τn →n→∞ 0 and (

√
nτ2

n)−1 →n→∞ 0,

∥f̂τn − f∗∥H
P→ 0.

Proof of Lemma 7. The proof follows almost directly from that of Rosasco et al. [2013,
Theorem 9]. The primary difference is our penalty term, but Lemma 6 mirrors Theorem 7
from Rosasco et al. [2013], with the same bound except that d is replaced by d5/4 in our
case. Consequently, all of the equations can be modified with this minor adjustment,
yielding the desired result.

E Estimation of Feature Space P in Section 4.2
Section 4.2 focuses on recovering the lower-dimensional subspace generated by the columns
of P . Since P is always estimated through the eigenvectors of cov(∇nf̂τ ), we first need

49



Chapter 2. Trace Norm Penalty on Sample Matrix of Gradients

consistency results for the eigenvectors of cov(∇nf̂τ ) in their estimation of cov(∇f∗) before
we can establish results of the main text.

E.1 Estimation of Eigenvectors of cov(∇f ∗)
We begin by showing that the matrix cov(∇f∗) is well-estimated by cov(∇nf̂τn) asymp-
totically under certain conditions on the sequence τn.

Lemma 8 (Consistency of Covariance of Gradients). Under Assumptions 3 and 4,∥∥∥cov
(
∇nf̂τn

)
− cov (∇f∗)

∥∥∥
F

P→ 0

for any positive sequence (τn)n∈N where τn → 0 and (
√

nτ2
n)−1 → 0 as n→∞.

Proof of Lemma 8. We can decompose the difference into two parts∥∥∥cov
(
∇nf̂τn

)
− cov (∇f∗)

∥∥∥
F
≤
∥∥∥cov

(
∇nf̂τn

)
− cov

(
∇f̂τn

)∥∥∥
F

+
∥∥∥cov

(
∇f̂τn

)
− cov (∇f∗)

∥∥∥
F

.

For the first part, since ∥f̂τn∥H ≤ M√
τν

, using the proof of Lemma 6, if (τn
√

n)−1 → 0,
we get ∥∥∥cov

(
∇nf̂τn

)
− cov

(
∇f̂τn

)∥∥∥
F

P→ 0.

For the second part, for any a, b ∈ [d],

(
cov

(
∇f̂τn

)
− cov (∇f∗)

)
a,b
≤ Eρ

∣∣∣∣∣ ∂f̂τn

∂x(a) (x) ∂f̂τn

∂x(b) (x)− ∂f∗

∂x(a) (x) ∂f∗

∂x(b) (x)
∣∣∣∣∣

≤ Eρ

(∣∣∣∣∣
(

∂f̂τn

∂x(a) (x)− ∂f∗

∂x(a) (x)
)

∂f̂τn

∂x(b) (x)
∣∣∣∣∣

+
∣∣∣∣∣
(

∂f̂τn

∂x(b) (x)− ∂f∗

∂x(b) (x)
)

∂f∗

∂x(a) (x)
∣∣∣∣∣
)

≤ ∥f̂τn − f∗∥HK2
2

(
∥f̂τn∥H + ∥f∗∥H

)
≤ ∥f̂τn − f∗∥HK2

2

(
∥f̂τn − f∗∥H + 2∥f∗∥H

)
.

We then have

∥∥∥cov
(
∇f̂τn

)
− cov (∇f∗)

∥∥∥
F

=

√√√√√ d∑
a,b=1

(
Eρ

∂f̂τn

∂xa
(x)∂f̂τn

∂xb
(x)− Eρ

∂f∗

∂xa
(x)∂f∗

∂xb
(x)
)2

≤ d∥f̂τn − f∗∥HK2
2

(
∥f̂τn − f∗∥H + 2∥f∗∥H

)
.

From Lemma 7, for any positive sequence (τn)n∈N such that τn → 0 and (
√

nτ2
n)−1 → 0

as n→∞, we have ∥f̂τn − f∗∥H
P→ 0, yielding the desired result.

We note that the proof of the above result requires only that f̂τ is consistent in the
H1(ρX) norm, rather than in the H norm. Convergence in the H norm is a much stronger
condition and directly implies convergence in the H1(ρX) norm.
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Using matrix perturbation theory, the previous lemma enables us to achieve consistency
in estimating the eigenvectors of cov(∇f∗).

Lemma 9 (Consistency of Eigenvectors). Let V0 be the first s eigenvectors of cov(∇f∗)
and V1 be the remaining d− s eigenvectors (in descending order of eigenvalue). Similarly,
let V̂0 be the first s eigenvectors of cov

(
∇nf̂τ

)
and V̂1 be the remaining d−s eigenvectors.

Under Assumptions 1, 2, 3, and 4, with ∆ as the minimal eigenvalue of cov(∇f∗), we
have

max
(
∥V0V T

0 − V̂0V̂ T
0 ∥F , ∥V1V T

1 − V̂1V̂ T
1 ∥F

)
≤
√

2

∥∥∥cov
(
∇nf̂τ

)
− cov (∇f∗)

∥∥∥
F

∆ .

Hence, for any positive sequence (τn)n∈N such that τn → 0 and (
√

nτ2
n)−1 → 0 as n→∞,

we have
V0V T

0
P→ V̂0V̂ T

0 and V1V T
1

P→ V̂1V̂ T
1 .

Proof of Lemma 9. Under Assumptions 1 and 2, V0 are the eigenvectors corresponding
to the non-zero eigenvalues, and V1 are those corresponding to the zero eigenvalues. Let
∆ = λs, where (λ1, . . . , λd) are the eigenvalues of cov(∇f∗) in descending order. Thus, ∆
represents the eigengap between the non-zero and zero eigenvalues of cov(∇f∗).

From matrix perturbation theory [Stewart and Sun, 1990, Theorem 3.4], we know that

∥V0V T
0 − V̂0V̂ T

0 ∥F =
√

2∥V0V T
0 (Id − V̂0V̂ T

0 )∥F ≤
√

2

∥∥∥cov
(
∇nf̂τ

)
− cov (∇f∗)

∥∥∥
F

∆ ,

which also implies

∥V1V T
1 − V̂1V̂ T

1 ∥F ≤
√

2

∥∥∥cov
(
∇nf̂τ

)
− cov (∇f∗)

∥∥∥
F

∆ ,

since V0V T
0 = Id − V1V T

1 and V̂0V̂ T
0 = Id − V̂1V̂ T

1 .
Using Lemma 8, we know that for any positive sequence (τn)n∈N such that τn → 0 and

(
√

nτ2
n)−1 → 0 as n→∞, ∥∥∥cov

(
∇nf̂τn

)
− cov (∇f∗)

∥∥∥
F

P→ 0.

Therefore,
∥V0V T

0 − V̂0V̂ T
0 ∥F

P→ 0 and ∥V1V T
1 − V̂1V̂ T

1 ∥F
P→ 0,

yielding the desired result.

E.2 Limit of the Errors when the Subspace Estimator Dimension is
Fixed

In this section, we fix the number s′ of leading eigenvectors of cov(∇nf̂τ ) to form the
estimator, denoted as P̂s′ . This approach aims to illustrate why accurately estimating s is
essential for achieving consistency in the Frobenius norm. Additionally, it provides results
for a data-independent choice of dimension, which might be applicable when a reasonable
upper bound on s or its exact value is known and used. We present the following lemma
on the asymptotic behaviour of the Frobenius error.
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Lemma 10 (Frobenius Error with Fixed Dimension). Under Assumptions 1, 2, 3, and
4, for any positive sequence (τn)n∈N such that τn → 0 and (

√
nτ2

n)−1 → 0 as n → ∞, we
have

∥ΠP −ΠP̂s′
∥2F

P→ |s− s′|.

We observe that the error converges to the difference between the true dimension of
the subspace and the dimension of the estimated subspace. Therefore, s′ must be exactly
equal to s for the error to be asymptotically null.

Proof of Lemma 10. Let V0 be the first s eigenvectors of cov(∇f∗) and V1 be the other
d− s ones (in descending order of eigenvalue). Similarly, let V̂0 be the first s eigenvectors
of cov(∇nf̂τ ) and V̂1 be the remaining d− s ones.

We recall that ΠP = V0V T
0 and ΠP̂ = P̂s′P̂ T

s′ , where P̂s′ are the first s′ eigenvectors of
cov(∇nf̂τ ). We denote by V̂ s+1:s′

1 the first s′ − s columns of V̂1 and V̂ s′+1:s
0 the last s− s′

columns of V̂0 when those quantities make sense.
Now if s′ ≥ s,

∥ΠP −ΠP̂s′
∥2F = ∥V0V T

0 − V̂0V̂ T
0 − V̂ s+1:s′

1 (V̂ s+1:s′

1 )T ∥2F
= ∥V0V T

0 − V̂0V̂ T
0 ∥2F + ∥V̂ s+1:s′

1 (V̂ s+1:s′

1 )T ∥2F
− 2⟨V0V T

0 − V̂0V̂ T
0 , V̂ s+1:s′

1 (V̂ s+1:s′

1 )T ⟩
= ∥V0V T

0 − V̂0V̂ T
0 ∥2F + s′ − s

− 2⟨V0V T
0 , V̂ s+1:s′

1 (V̂ s+1:s′

1 )T ⟩
= ∥V0V T

0 − V̂0V̂ T
0 ∥2F + s′ − s

− 2⟨ΠV0 , Π
V̂ s+1:s′

1
⟩.

By Lemma 9, the first and third terms of the above inequality tend to 0 in probability,
yielding s′ − s as the limit.

If s′ < s,

∥ΠP −ΠP̂s′
∥2F = ∥V0V T

0 − V̂0V̂ T
0 + V̂ s′+1:s

0 (V̂ s′+1:s
0 )T ∥2F

= ∥V0V T
0 − V̂0V̂ T

0 ∥2F + ∥V̂ s′+1:s
0 (V̂ s′+1:s

0 )T ∥2F
+ 2⟨V0V T

0 − V̂0V̂ T
0 , V̂ s′+1:s

0 (V̂ s′+1:s
0 )T ⟩

= ∥V0V T
0 − V̂0V̂ T

0 ∥2F + s− s′

− 2⟨V1V T
1 , V̂ s′+1:s

0 (V̂ s′+1:s
0 )T ⟩

= ∥V0V T
0 − V̂0V̂ T

0 ∥2F + s− s′

− 2⟨ΠV1 , Π
V̂ s+1:s′

0
⟩.

By Lemma 9, the first and third terms of the above inequality tend to 0 in probability,
yielding s − s′ as the limit. We then have that ∥ΠP − ΠP̂s′

∥2F converges to |s′ − s| in
probability.

As discussed in the main text, we are also concerned with the safe filter error defined
in Equation (2.6). We now present the following result regarding its asymptotic behaviour
when the dimension of the estiamted subspace is fixed.

Lemma 11 (Safe Filter Error with Fixed Dimension). Under Assumptions 1, 2, 3, and
4, for any positive sequence (τn)n∈N such that τn → 0 and (

√
nτ2

n)−10 as n→∞, we have
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• if s′ ≥ s, then
∥ΠP (Id −ΠP̂s′

)∥2F
P→ 0,

• if s′ < s, then
∥ΠP (Id −ΠP̂s′

)∥2F
P→ s− s′.

We note that it is only necessary for s′ to be larger than s to achieve an asymptotically
safe filter. Therefore, any choice of s′ that exceeds s but remains small enough to effectively
reduce the dimensionality of the problem is appropriate.

Here’s an improved version of the proof with better phrasing and clarity:

Proof of Lemma 11. Let V0 be the first s eigenvectors of cov(∇f∗) and V1 be the remaining
d − s eigenvectors (in descending order of eigenvalue). Similarly, let V̂0 be the first s
eigenvectors of cov(∇nf̂τ ) and V̂1 be the remaining d− s eigenvectors.

We have
∥ΠP (Id −ΠP̂s′

)∥2F = s− tr(ΠP ΠP̂s′
)

where ΠP = V0V T
0 and ΠP̂s′

= P̂s′P̂ T
s′ .

Let V̂ s+1:s′

1 denote the first s′ − s columns of V̂1 and V̂ s′+1:s
0 denote the last s − s′

columns of V̂0, when these quantities make sense.
If s′ ≥ s:

∥ΠP (Id −ΠP̂s′
)∥2F = s− tr(V0V T

0 (V̂0V̂ T
0 + V̂ s+1:s′

1 (V̂ s+1:s′

1 )T ))

= s− tr(V0V T
0 V̂0V̂ T

0 )− tr(V0V T
0 V̂ s+1:s′

1 (V̂ s+1:s′

1 )T ).

By Lemma 9, the second term tends to s and the third term to 0 in probability, yielding
the desired result.

If s′ < s:

∥ΠP (Id −ΠP̂s′
)∥2F = s− tr(V0V T

0 (V̂0V̂ T
0 − V̂ s′+1:s

0 (V̂ s′+1:s
0 )T ))

= s− tr(V0V T
0 V̂0V̂ T

0 ) + tr((Id − V1V T
1 )V̂ s′+1:s

0 (V̂ s′+1:s
0 )T )

= s− tr(V0V T
0 V̂0V̂ T

0 ) + tr(V̂ s′+1:s
0 (V̂ s′+1:s

0 )T )− tr(V1V T
1 V̂ s′+1:s

0 (V̂ s′+1:s
0 )T ).

By Lemma 9, the second term tends to 1, the third term to s− s′, and the fourth term
to 0 in probability, yielding the desired result.

E.3 Proof of Theorem 5

We now have all the necessary components to prove the main result on the consistency
of the subspace estimator. When considering the estimated dimension of the estimated
subspace, the result crucially depends on the lower semi-continuity of the rank.

Proof of Theorem 5. For the first result, we apply Lemma 10 with s′ = s.
For the second result, we have

∥ΠP (Id −ΠP̂ )∥2F = s− tr(ΠP ΠP̂ ).

We denote by V̂ s+1:ŝ
1 the first ŝ− s columns of V̂1 and by V̂ ŝ+1:s

0 the last s− ŝ columns of
V̂0 when these quantities make sense.
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Now, we have

∥ΠP (Id −ΠP̂ )∥2F = s− tr(V0V T
0 V̂0V̂ T

0 ) + 1ŝ≥s tr(V0V T
0 V̂ s+1:ŝ

1 (V̂ s+1:ŝ
1 )T )

+ 1ŝ<s

(
tr(V̂ ŝ+1:s

0 (V̂ ŝ+1:s
0 )T )− tr(V1V T

1 V̂ ŝ+1:s
0 (V̂ ŝ+1:s

0 )T )
)

.

By Lemma 9, we know that

tr(V0V T
0 V̂0V̂ T

0 ) P→ s and tr(V0V T
0 V̂ s+1:ŝ

1 (V̂ s+1:ŝ
1 )T ) P→ 0.

Additionally, we know that
(
tr(V̂ ŝ+1:s

0 (V̂ ŝ+1:s
0 )T )− tr(V1V T

1 V̂ ŝ+1:s
0 (V̂ ŝ+1:s

0 )T )
)

is bounded.

Since the rank is lower semi-continuous and cov(∇nf̂ τ ) P→ cov(∇f∗), we necessarily
have

P
(
rank cov(∇nf̂τn) ≥ s

)
P→ 1,

which can also be written as 1ŝ≥s
P→ 1. Therefore,

∥ΠP (Id −ΠP̂ )∥2F
P→ 0.

F Numerical Experiments
In this section we provide technical details of the numerical experiments. Recall that the
code is provided at https://github.com/BertilleFollain/KTNGrad/.

In the first experiment presented in Section 5.1, the regularisation parameters were
set as follows: ν = 10−6, τ = 1

8n , µ = 10−16 (used simply to avoid issues with the
Cholesky decomposition, see the code) and ϵ = 10−8. The optimisation process used a
convergence threshold δ = 10−6 and a maximum of 10 iterations. The Gaussian kernel
was parameterised by σ, chosen as the median of the pairwise Euclidean distances between
the training samples.

In the second experiment presented in Section 5.2, we evaluate and compare the per-
formance of several methods using synthetic datasets generated with varying sample sizes
and dimensions. The experiment uses a range of values for both sample size n and dimen-
sion d. The sample sizes n were set to 10, 20, 50, 75, 100, 125, 150, and 175, while the
dimensions d explored were 3, 5, 10, 15, 20, 25, 30, and 35. The fixed values were d = 10
when varying n, and n = 175 when varying d.

For KTNGrad and KTNGrad, retrained, the regularisation parameters were set
as ν = 10−5, µ = 10−8, and ϵ = 10−8, while τ was defined as 1

2n . The convergence threshold
was δ = 10−3, with the optimisation process capped at a maximum of 5 iterations. For
KRR, the regularisation parameter λ was set as 1

n . PyMave and MARS were run using
their default settings.

The threshold used to select the dimension of the features, either for the dimension
score, or for training MARS in KTNGrad, retrained is actually used on the singular
values of ∇nf̂τ , with the threshold above which values are kept set to tr(∇nf̂τ )/(2d).
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CHAPTER 3

Group Lasso Penalty on Hermite Polynomials Decomposition

The contents of this chapter are available in the article B. Follain and F. Bach. Nonpara-
metric Linear Feature Learning in Regression Through Regularisation. Electronic Journal
of Statistics, 18(2):4075–4118, 2024, while the code is available at https://github.com/
BertilleFollain/RegFeaL.

Representation learning plays a crucial role in automated feature selection, par-
ticularly in the context of high-dimensional data, where non-parametric meth-
ods often struggle. In this study, we focus on supervised learning scenarios
where the pertinent information resides within a lower-dimensional linear sub-
space of the data, namely the multi-index model. If this subspace were known, it
would greatly enhance prediction, computation, and interpretation. To address
this challenge, we propose a novel method for joint linear feature learning and
non-parametric function estimation, aimed at more effectively leveraging hidden
features for learning. Our approach employs empirical risk minimisation, aug-
mented with a penalty on function derivatives, ensuring versatility. Leveraging
the orthogonality and rotation invariance properties of Hermite polynomials, we
introduce our estimator, named RegFeaL. By using alternative minimisation,
we iteratively rotate the data to improve alignment with leading directions. We
establish that the expected risk of our method converges in high-probability to
the minimal risk under minimal assumptions and with explicit rates. Addition-
ally, we provide empirical results demonstrating the performance of RegFeaL
in various experiments.
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1. Introduction

1 Introduction
The increasing availability of high-dimensional data has created a demand for effective
feature selection methods that can handle complex datasets. Representation learning,
which aims to automate the feature selection process, plays a crucial role in extracting
meaningful information from such data. However, non-parametric methods often struggle
in high-dimensional settings.

A sensible approach is to consider that there are a lower number of unknown relevant
linear features, or linear transformations of the original data, that explain the relationship
between the response and factors. A popular way to model this is to consider the multi-
index model [Xia, 2008], where we assume that the prediction function is the composition
of few linear features which form a linear subspace (the effective dimension reduction
(e.d.r.) subspace) and a non-parametric function. The multi-index model has been used
in practice in many fields, such as ecology [Stenseth et al., 2022] or bio-informatics [An-
toniadis et al., 2003]. If the features were known, learning would be much easier due
to the lower dimensionality of the problem, and their low number allows for a simpler,
more explainable model, as well as a lesser need for computational and storage resources.
Although these relevant features are not known a priori, recognising their existence en-
ables the development of methods that incorporate them, potentially resulting in better
estimators for prediction.

Related work. A wide range of methods have been proposed to estimate the e.d.r. space
in the context of multi-index models. Brillinger [2012] introduced the method of moments,
initially designed for Gaussian data and an e.d.r. of dimension one. This method uses
specific moments to eliminate the unknown function and focuses solely on the influence
of the e.d.r. space. Extensions of this approach for distributions with differentiable log-
densities have been provided, resulting in the average derivative estimation (ADE) method
[Stoker, 1986].

To incorporate subspaces of any dimension, several methods have been proposed. Slic-
ing methods, such as slice inverse regression (SIR) [Li, 1991], use second-order moments to
account for subspaces. Principal Hessian directions (PHD) [Li, 1992] extend the approach
to elliptically symmetric data. Combining these techniques, sliced average derivative es-
timation (SADE) [Babichev and Bach, 2018] offers a comprehensive approach. However,
these methods heavily rely on assumptions about the distribution shape and require prior
knowledge of the distribution, limiting their applicability.

Iterative improvements have been suggested for both the one-dimensional latent sub-
space case [Hristache et al., 2001] and the general case [Dalalyan et al., 2008]. Other
optimisation-based methods, such as local averaging, aim to minimise an objective func-
tion to estimate the subspace [Fukumizu et al., 2009, Xia et al., 2002]. Although these
procedures exhibit favourable performance in practice, particularly the MAVE method
[Xia et al., 2002], the theoretical guarantees provided by Xia et al. [2002] show exponen-
tial dependency in the dimension of the original data. Nonetheless, the recent work by
Jing Zeng and Zhang [2024] has made significant contributions to sufficient dimension re-
duction (SDR) by providing robust theoretical results for high-dimensional data that do
not exhibit exponential dependency. However, their method, designed primarily for di-
mension reduction and variable selection in the specific setting of the square loss, relies on
the linearity condition, which holds for example under the assumption that the covariates
follow an elliptically contoured distribution.

In our work, we consider regularising the empirical risk by incorporating derivatives, a
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technique employed in various contexts. Classical splines, such as Sobolev spaces regulari-
sation [Wahba, 1990], have used derivative-based regularisation. More recently, derivative
regularisation has been employed in the context of semi-supervised learning [Cabannes
et al., 2021], as well as in linear subspace estimation using SADE [Babichev and Bach,
2018].

Contributions. We propose a novel approach for joint function estimation and effective
dimension reduction space estimation in multi-index models.

We employ the empirical risk minimisation framework, compatible with a wide range
of loss functions, which is regularised by a penalty on the derivatives of the prediction
function. The proposed regularisation enforces dependence on a reduced set of projected
dimensions. Our method addresses the discussed limitations of previous methods. Indeed
the assumptions on the distribution of the covariates are minimal (typically subgaussianity
of the norm), and does not require said distribution to be known a priori. We are also
able to provide explicit rates for the high-probability convergence of the expected risk of
our estimator to the minimal risk, again with limited assumptions.

To construct our estimator, which we coin RegFeaL, we exploit the advantageous
properties of Hermite polynomials, which exhibit orthogonality and rotation invariance.
By incorporating alternative minimisation on a variational formulation of the problem, we
enable iterative rotation of the data to better align with the leading directions, as well as
easy computation of the unknown relevant dimension of the e d.r. space. Furthermore,
for the specific case of the variable selection problem, that is, when only a subset of the
coordinates of the original data is relevant, we can simplify our proposed penalty term
which yields a computationally more efficient algorithm.

While our primary objective is to leverage the existence of a dependency on only a
few variables or features, we also offer principled ways to estimate the dimension of the
feature space and select the relevant features.

We provide detailed explanations about the efficient computation of our estimator,
ensuring its practical usability. Additionally, we present theoretical results that establish
the high-probability convergence to the minimal risk of the expected risk of our estimator,
with limited assumptions on the loss and data distribution. This allows for a deeper un-
derstanding of the performance of the method and the dependency on certain parameters
such as the dimension of the original data and the number of samples.

To demonstrate the strengths of our approach, we conduct an extensive set of exper-
iments focusing on training behaviour, dependency on sample size and dimension, and
comparison to other methods.

Importantly, our regularisation strategy is applicable to a wide range of problems
where empirical risk can be formulated, making it a versatile tool for feature learning and
dimensionality reduction tasks, potentially extending beyond statistics to fields such as
signal processing and control.

In summary, our contributions encompass the introduction of a novel empirical risk
minimisation framework with derivative-based regularisation for prediction and e.d.r. sub-
space estimation in multi-index models. We provide efficient computational techniques,
theoretical insights, and empirical evidence, highlighting the advantages of our proposed
method.

Chapter organisation. The chapter is organised as follows: we begin by describing
the problem, our penalties, and the use of Hermite polynomials in Section 2. Then, we
address the question of effectively computing our estimator RegFeaL in Section 3. In
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Section 4, we discuss the convergence of the empirical risk of our estimator. In Section 5, we
present numerical studies to illustrate the behaviour of RegFeaL. Finally, in Section 6, we
summarise our findings, highlight the contributions of our research, and discuss potential
future directions.

Notations. Let N denote the set of non-negative integers and N∗ the set of positive
integers. For d ∈ N, let [d] = 1, . . . , d. Given x ∈ Rd and a ∈ [d], xa represents the a-th
component of x. Similarly, for S ⊂ [d], xS denotes (xa)a∈S . Let p, d ∈ N∗, and consider
a matrix A ∈ Rp×d. The matrix AS corresponds to the columns of A extracted using
indices from S, while Ai,j represents the element of A in the j-th position of row i. The
cardinality of a set S is denoted by |S|. Id represents the d × d identity matrix, and Od

denotes the set of d × d orthogonal matrices. For any d × d matrix A, tr(A) denotes its
trace, and Diag(A) represents the diagonal matrix of size d×d with the diagonal elements
of A. The transpose of a matrix B is denoted by B⊤. For an invertible matrix Λ, Λ−1

represents its inverse. Given η ∈ Rd, Diag(η) is the diagonal matrix of size d × d with η

as its diagonal. For r > 0, ∥η∥r =
(∑d

a=1 |ηa|r
)1/r. For any α ∈ Nd, |α| = ∑d

a=1 αa.

2 Preliminaries

2.1 Problem Description

We consider a standard regression problem, where we have a dataset (x(i), y(i))i∈[n], n ∈
N∗consisting of independent and identically distributed (i.i.d.) realisations of a pair of
random variables (X, Y ) with probability measure ν on X ×Y ⊂ Rd×R. Our objective is
to estimate the regression function f∗ := arg minf∈F R(f), where R(f) := Eν(ℓ(Y, f(X)))
is the risk, ℓ is a loss function and F a space of functions from Rd to R. At this stage, we do
not impose any assumptions regarding the choice of loss function or the data distribution.

We consider the multi-index model [Xia, 2008], i.e., a model where the regression
function depends on a low-rank linear transformation of the original variables.

Assumption 5 (Feature Learning). We assume that the regression function f∗ can be
expressed as the combination of a rank s linear transformation P and a function g∗

from Rs → R, i.e.,

∃s ∈ [d], ∃P ∈ Rd×s, P ⊤P = Is, ∃g∗ : Rs → R, ∀x ∈ Rd, f∗(x) = g∗(P ⊤x).

We do not assume any prior knowledge about the value of s. The model is nonpara-
metric hence it remains broad. Our objective is to simultaneously estimate both f∗ and
the associated linear transformation P , as well as the dimension s, by means of regu-
larised empirical risk minimisation. Recall the definition of the empirical risk R̂(f) :=
1
n

∑n
i=1 ℓ(y(i), f(x(i))). This approach offers versatility, allowing its application to various

scenarios. Although our focus lies on the regression setting, we acknowledge the potential
of the regularisation-based method for future work in any setting where a risk can be
defined.

2.2 Penalising by Derivatives

With these assumptions, it is common to employ derivative-based regularisation techniques
[Babichev and Bach, 2018, Rosasco et al., 2013]. Under mild regularity assumptions, if
we express f as f = g(Q⊤·) with Q ∈ Rd×s, then for all x ∈ Rd, ∇f(x) · ∇f(x)⊤ =
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Q∇g(x)·∇g(x)⊤Q⊤, where∇f(x) ∈ Rd denotes the gradient of f at point x. Consequently,
we observe that ∫

X
∇f∇f⊤ν =

(∫
X

∂f

∂xa

∂f

∂xb
ν

)
a,b∈[d]

has a rank of at most s. This observation motivates us to employ the rank of
∫

X ∇f∇f⊤ν
as a penalisation. However, the discontinuous nature of the rank makes this approach chal-
lenging for optimisation. To address this, we could penalise instead by tr

( ∫
X ∇f∇f⊤ν

)
as a convex relaxation [Recht et al., 2010].

This strategy would extend the work of Rosasco et al. [2013], which focuses on variable
selection, a special case of feature learning. It corresponds to the constraint that P from
Assumption 5 only contains 0 and 1 (with exactly a single one in each column), resulting
in a model where the regression function depends on a limited number of the original
variables.

Assumption 6 (Variable Selection). We assume that f∗, the regression function, actually
only depends on s of the d variables, i.e.,

∃s ∈ [d], ∃S ⊂ [d], |S| = s, ∃ g∗ : Rs → R, ∀x ∈ Rd, f∗(x) = g∗(xS).

In this variable selection setting, we can remark that it suffices to penalise by a simpler
quantity. Specifically, under some mild regularity assumptions on the function f , f does
not depend on variable xa if and only if the partial derivative of f with respect to xa,
denoted by ∂f

∂xa
, is null everywhere on X . Hence, the task is to design a penalty that

enforces sparsity in the dependence on different variables.
To address this, we can draw inspiration from the group Lasso [Yuan and Lin, 2006],

which extends the Lasso method to enable structured sparsity. The group Lasso encourages
groups of related quantities to be selected or excluded together by penalising the sum over
each group using an appropriate penalty. For example, the derivatives with regard to a
variable xa at data points x(i) should all be null if the function does not depend on variable
xa. Hence, they constitute a relevant group for group Lasso.

Combining these observations, Rosasco et al. [2013] proposed a strategy using the
fact that for all a ∈ [d], f does not depend on xa if and only if

∫
X

(
∂f
∂xa

(x)
)2

ν = 0.
They introduced penalties on each variable and summed them to obtain the penalty∑d

a=1
( ∫

X
( ∂f

∂xa
(x)
)2

ν(x)dx
)1/2. However, since these quantities are intractable due to

the unknown nature of ν, they use a data-dependent penalty instead

d∑
a=1

(
1
n

n∑
i=1

(
∂f

∂xa
(x(i))

)2)1/2

.

By assuming that f belongs to some regular reproducing kernel Hilbert space (RKHS),
the partial derivatives are easily computable, and so is the penalty [Rosasco et al., 2013]
[for a good introduction to RKHS, see Aronszajn, 1950]. However, this regularisation
by an estimate of the L2 norms of derivatives in the context of RKHS is not suitable.
Functions that depend on a single variable, such as x1, do not belong to the RKHS,
making it an inappropriate space for addressing this type of problem. Additionally, another
regularisation by the norm in the RKHS is required, introducing an extra hyperparameter.
Moreover, using derivatives only at the data points limits the exploitation of the power of
regularity.

We are confronted with two challenges here. First, how can the penalisation scheme be
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improved for variable selection? Second, how can it be adapted for feature learning? While
our primary goal is the latter, we consider the former as a by-product of our methodology.

To address both challenges, we employ Hermite polynomials [Hermite, 2009], although
it is worth noting that various other alternatives could have been considered for the first
problem where rotation invariance is not needed.

2.3 Hermite Polynomials for Variable Selection

To facilitate understanding, let us first consider the simpler case of variable selection.
We employ multidimensional Hermite polynomials due to their suitability for both vari-
able selection and feature learning. The normalised one-dimensional Hermite polynomi-
als (hk(x))k≥0 form an orthonormal polynomial basis for the standard Gaussian measure
on R with density 1√

2π
e−x2/2. The first few polynomials are given by1

h0(x) = 1, h1(x) = x, h2(x) = 1√
2

(x2 − 1), h3(x) = 1√
6

(x3 − 3x).

These polynomials possess useful properties that allow their recursive computation and
characterise their growth and their derivatives2

hn+2(x) = x√
n + 2

· hn+1(x)−
√

n + 1
n + 2 · hn(x) (3.1)

h′
n(x) =

√
n · hn−1(x) (3.2)

|hn(x)| ≤ exp(x2/4). (3.3)

Next, we define the multivariate polynomials as follows

(
Hα
)

α∈Nd where ∀x ∈ Rd, Hα(x) =
d∏

a=1
hαa(xa). (3.4)

This family forms an orthonormal basis of the space L2(q) :=
{
f : Rd → R,

∫
Rd f2q <

+∞
}

where q(x) = 1
(2π)d/2 e−∥x∥2/2 denotes the standard normal distribution on Rd. We

now present a Lemma which justifies the use of the multivariate Hermite polynomials in
the variable selection setting.

Lemma 12 (Equivalence for Dependency on Variables). Let f ∈ L2(q) and express it
as f = ∑

α∈Nd f̂(α)Hα.3 Then for any b ∈ [d],

f does not depend on variable xb ⇐⇒ ∀α ∈
(
Nd)∗, αb ̸= 0 =⇒ f̂(α) = 0.

1Given the regular “physicist” Hermite polynomials Hk (not to be confused with multivariate polyno-
mials defined in Equation (3.4)), we have hk(x) = 1√

2kk!
Hk(x/

√
2) for any k ∈ N and for the “probabilist”

Hermite polynomials Hek, we have hk(x) = 1√
n! Hek(x).

2The last property can be proved using Hermite functions and Cramer’s inequality [Szegő, 1939].
3Note that in this chapter f̂ corresponds to coefficients in the Hermite polynomials decomposition of

f , not to the estimator of f∗.
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Proof of Lemma 12. For x ∈ Rd, we have h0(x) = 1 and

f(x) = f̂(0) +
∑

α∈(Nd)∗, αb=0
f̂(α)

∏
a∈[d]\{b}

hαa(xa)

︸ ︷︷ ︸
does not depend on xb

+
∑

α∈(Nd)∗, αb>0
f̂(α)

∏
a∈[d]

hαa(xa)

︸ ︷︷ ︸
depends on xb

,

i.e., f can be decomposed into two additive components, one of which does not depend
on xb. For the component that depends on xb, it is the sum over α ∈ Nd such that αb is
non-zero, yielding the result.

We observe that when f does not depend on a variable, it corresponds to a specific
sparsity pattern in the coefficients f̂(α) with respect to the basis (Hα)α∈Nd . Indeed, if f

does not depend on xb, all coefficients f̂(α) for α in the group {α ∈
(
Nd
)∗

, αb > 0} must be
null. These groups overlap for different variables, and a similar argument holds for feature
learning as we will see in Section 2.4. This specific sparsity pattern motivates the use of
a penalty based on group Lasso [Yuan and Lin, 2006], and more specifically overlapping
group Lasso [Jenatton et al., 2011].

Hence, the Hermite polynomial basis is well-suited to this variable selection setting,
while the space L2(q) is sufficiently large to describe a wide range of functions. However,
it is worth noting that other spaces and well-adapted bases, such as any orthonormal basis
of square-integrable functions, could also be used. Moreover, we use the Gaussian measure
only to define the basis, and our method can be applied to all distributions.

To define a penalty relevant to variable selection, we examine the derivatives of Hα.
Here, we decompose any f ∈ F as f = ∑

α∈Nd f̂(α)Hα. Let ea denote the a-th element
of the canonical basis of Rd, for a ∈ [d]. Using Equation (3.2), we obtain the following
identities

∂Hα

∂xa
= √αaHα−ea (3.5)

∂f

∂xa
=

∑
α∈(Nd)∗

√
αaf̂(α)Hα−ea (3.6)

∫
Rd

(
∂f

∂xa

)2
q =

∑
α∈(Nd)∗

αaf̂(α)2. (3.7)

However, we remark that Equation (3.7) corresponds to the expected version of the
penalty proposed by Rosasco et al. [2013] (when ν = q), which we deemed not suitable
for our problem: indeed, penalising the L2-norm of derivatives does not impose enough
regularity for statistically efficient non-parametric estimation and thus requires extra reg-
ularisation, as specified by Rosasco et al. [2013].

We consider instead introducing a sequence (ck)k>0 of non-negative reals, to further
regularise and avoid the need for additional regularisation. We consider the space F ,
spanned by the family composed of Hα for α = 0 or α ∈ (Nd) such that c|α| > 0, i.e., F :=
Span

(
{H0} ∪ {Hα, for α ∈ (Nd)∗ such that c|α|>0}

)
and consider two penalties. First, we

define a sparsity-inducing penalty, which depends on a hyper-parameter r ∈ (0, +∞)

Ωvar(f) =
( d∑

a=1

( ∑
α∈(Nd)∗

αa
1

c|α|
f̂(α)2

)r/2)1/r

.

This penalty encourages sparsity in the dependence of f on individual variables, as it
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pushes quantities of the form
(∑

α∈(Nd)∗ αa
1

c|α|
f̂(α)2)r/2 to be 0. When this is the case,

we obtain that ∀α ∈ (Nd)∗, αa ̸= 0, f̂(α) = 0, i.e., f does not depend on variable xa

(Lemma 12). When r ≥ 1, Ωvar is a norm, which makes the problem easier to study
from a theoretical point of view because if the loss is convex, this will yield a convex
optimisation problem. However, estimators obtained through regularised empirical risk
minimisation often suffer from bias due to the strong shrinkage associated with sparsity.
Convex penalties can inadvertently reduce the significance of essential variables or features
by excessive shrinkage to enforce sparsity. To address these issues, one can retrain on
the set of selected variables or use concave penalties, which, despite presenting more
analytical challenges, frequently deliver superior results by pushing the solution towards
the boundary and enhancing sparsity [Zhang, 2010, Bach et al., 2012]. In this work, we
adopt this strategy through the hyper-parameter r when r < 1, which is the choice used
in practice, while r = 1 is used in the theoretical analysis.

The link with the nullity of the derivative can be seen using Equation (3.7)
( ∑

α∈(Nd)∗

αa
1

c|α|
f̂(α)2

)r/2
= 0 ⇐⇒

∫
Rd

(
∂f

∂xa

)2
q = 0.

Next, we introduce a smoothness-inducing norm, which penalises higher-order polyno-
mials, i.e., those with large |α| (the dependence only on |α| is needed for future rotation
invariance)

Ω0(f) =
( ∑

α∈(Nd)∗

1
c|α|

f̂(α)2
)1/2

.

It is important to note that Ω0 is not integrated into the theoretical analysis and will be
used with a much smaller and fixed parameter compared to Ωvar. Its primary purpose is
to enforce numerical stability during the optimisation procedure, as discussed in Section
3.

The choice of (ck)k∈N∗ significantly influences the behaviour of the penalties. In this
work, we will consider two specific choices: ck = 1k≤M for some M ∈ N and ck = ρk for
some ρ ∈ [0, 1). Both choices ensure that all three penalties are well-defined. Notably,
when M = 1, Ωvar considered with the quadratic loss reduces to the basic Lasso problem
with linear features [Tibshirani, 1996].

It is worth mentioning that the coefficient f̂(0), which corresponds to the constant
function H0 = 1, is never penalised because it does not depend on any of the variables.

We then consider estimating f∗ in the setting described in Assumption 6 by

fλ,µ
var := arg min

f∈F
R̂(f) + λΩ2

0(f) + µΩr
var(f), (3.8)

with λ a fixed parameter and µ a hyper-parameter to be estimated. When r ≥ 1 and the
loss is convex, we obtain a strongly-convex objective function, hence with a unique global
minimiser. When r < 1, which we use in practice, only a local minimiser can be reached.

2.4 Hermite Polynomials for Feature Learning

We now turn to the feature learning setting described in Assumption 5. The Hermite
polynomials are particularly well-suited for feature learning, as they allow us to bridge
the gap between variable selection and feature learning with only a minor modification of
the previous penalties. This suitability is visible in some important properties which we
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now describe. First, the multivariate Hermite polynomials possess a rotation invariance
property.

Lemma 13 (Rotational Invariance Property of Hermite Polynomials). For any x, x′ ∈ Rd,
any k ∈ N and any orthogonal matrix R ∈ Od,∑

|α|=k

Hα(x)Hα(x′) =
∑

|α|=k

Hα(Rx)Hα(Rx′).

The proof of this lemma is available in Appendix A.1. This property will be extremely
useful to characterise the statistical behaviour of our methods, as discussed in Section 4.
Another key property is that for any R ∈ Od, the family

(
Hα(R·)

)
α∈Nd also forms a basis

of L2(q). Consequently, we can express any f ∈ F in this basis.
Moreover, we can characterise the derivatives of functions in L2(q) as in Equation (3.7).

Let f ∈ F be written as f = ∑
α∈Rd f̂(α)Hα, then using Equation (3.6), we have the

following expressions for the derivatives∫
Rd

(
∂f

∂xa

)(
∂f

∂xb

)
q =

∑
α∈Nd

√
(αa + 1)

√
(αb + 1)f̂(α + ea)f̂(α + eb). (3.9)

As before, we aim to enhance the regularisation using the sequence (ck)k>0 For r ∈
(0, +∞), we define

Ωfeat(f) =
(

tr
(
M

r/2
f

))1/r

with (Mf )a,b =
∑

α∈Nd

1
c|α|+1

√
αa + 1

√
αb + 1f̂(α + ea)f̂(α + eb), a, b ∈ [d]. (3.10)

It is worth noting that Mf is a positive semi-definite matrix (see the proof of Lemma 14).
The penalty Ωfeat pushes the eigenvalues of of Mf towards 0, and since the rank of Mf is
equal to the number of its non-zero eigenvalues, the penalty encourages the rank of Mf

to be low. It is crucial that c|α| depends solely on |α| and not on any other quantities
depending on α (e.g., maxa∈[d] αa for example). This property allows us to leverage the
rotation invariance property described in Lemma 13, which is needed for our estimation
algorithm in Section 3 and for obtaining statistical consistency results in Section 4.

Let us now examine some important properties of the proposed regularisation.

Lemma 14 (Properties of the Regularisation). For any f ∈ F , the following properties
hold

1. Let R ∈ Od, if we define g = f(R·), then Mf = RMgR⊤ and Ωfeat(f) = Ωfeat(g).

2. Ωvar(f) =
(

tr
(

Diag(Mf )r/2))1/r.

3. If Mf is diagonal, Ωfeat(f) = Ωvar(f).

4. Let Mf = UDU⊤ be the eigendecomposition of Mf , where U ∈ Od and D is a diag-
onal matrix. If we define g = f(U ·), then Mg = D is diagonal and thus Ωfeat(f) =
Ωvar(g).

5. Let Mf = UDU⊤ be the eigendecomposition as above. If the rank of D is s, then g =
f(U ·) only depends on variables xa where Da > 0 and f = g(U⊤·) only depends
on s linear transformations of the original coordinates, namely of (U⊤x)a for a such
that Da > 0.
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6. If r = 1,
Ωfeat(f) ≥ inf

R∈Od

Ωvar(f(R·)).

Proof of Lemma 14. We proceed by proving each assertion separately.

1. We have for z ∈ Rd

z⊤Mf z =
d∑

a,b=1

∑
α∈Nd

1
c|α|+1

zazb

√
αa + 1

√
αb + 1f̂(α + ea)f̂(α + eb)

=
d∑

a,b=1

∑
α∈Nd

1
c|α|+1

zazb

〈 ∂f

∂xa
, Hα

〉
L2(q)

〈 ∂f

∂xb
, Hα

〉
L2(q)

=
∑

α∈Nd

1
c|α|+1

〈
z⊤∇f, Hα

〉2
L2(q).

This shows that Mf is positive semi-definite, writing N (0, Id) for the standard nor-
mal distribution on Rd, we then have

z⊤Mgz =
∑

α∈Nd

1
c|α|+1

(
EX∼N (0,Id)

(
z⊤∇g(X)Hα(X)

))2

=
∑

α∈Nd

1
c|α|+1

(
EX∼N (0,Id)

(
z⊤R⊤∇f(RX)Hα(X)

))2

as ∇g(X) = R⊤∇f(RX)

=
∑

α∈Nd

1
c|α|+1

(
EX∼N (0,Id)

(
z⊤R⊤∇f(RX)Hα(RX)

))2

by Lemma 13,

=
∑

α∈Nd

1
c|α|+1

(
EX∼N (0,Id)

(
z⊤R⊤∇f(X)Hα(X)

))2

by rotation invariance of the standard Gaussian,

= z⊤R⊤Mf Rz,

that is Mg = R⊤Mf R. The second assertion follows by the rotation invariance of
the trace.

2. It suffices to see that for any a ∈ [d]

Diag(Mf )a,a =
∑

α∈Nd

1
c|α|+1

(αa + 1)2f̂(α + ea)2 =
∑

α∈Nd,αa>0

1
c|α|

αaf̂(α)2,

and therefore

tr
(

Diag(Mf )r/2) =
d∑

a=1

( ∑
α∈Nd

αa
1

c|α|
f̂(α)2

)r/2
= Ωvar(f)r.

3. This is a direct consequence of the previous result, because of the definition of Ωfeat.

4. By applying the first result, we find that Ωfeat(f) = Ωfeat(g) and Mg = D. Then,
using the third result, we conclude that Ωvar(g) = Ωfeat(g). This establishes the
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desired result.

5. Consider the function g = f(U ·). From the previous result, we know that Mg = D
is diagonal. According to the definition of Ωvar, we have Da = 0 if and only if g does
not depend on variable xa. Consequently, if the rank of D is s, then g only depends
on s variables, specifically those for which Da > 0. As a result, we can conclude that
f = g(U⊤·) depends solely on (U⊤x)a for a such that Da > 0.

6. Let us examine Ωfeat and Ωvar as follows

Ωfeat(f) =
(

tr
(
M

1/2
f

))
, Ωvar(f) =

(
tr
(

Diag(Mf )1/2)).
We can decompose Mf as Mf = UDU⊤ using its eigendecomposition. If we define
g = f(U ·), then Mg = D is diagonal, and we have Ωfeat(f) = Ωfeat(g) = Ωvar(g).
Consequently, we obtain the inequality

Ωfeat(f) ≥ inf
R∈Od

Ωvar(f(R·)).

The rotation invariance of Ωfeat is crucial in the context of feature learning, as it ensures
that the penalty is not biased towards specific directions. Similarly, Ω0 is also rotation
invariant, as can be seen using Lemma 13.

We observe that given a function f and its associated matrix Mf , we can construct a
function g consisting of a rotation of the data and f in such a way that the feature penalty
on f is equal to the variable selection penalty on g. This highlights that the feature learning
setting extends the variable selection problem by allowing data rotation. Furthermore, we
can easily determine if g depends only on a few variables, and therefore if f depends only
on a few linear transformations of the data, which aligns with our assumption for f∗. The
last assertion of Lemma 14 will be useful to show that the proof of the consistency for the
variable penalty easily extends to the feature learning setting, see Section 4.

With these considerations, we proceed to estimate f∗ in the setting described by As-
sumption 5 by solving

fλ,µ
feat := arg min

f∈F
R̂(f) + λΩ2

0(f) + µΩr
feat(f), (3.11)

with λ a fixed parameter and µ a hyper-parameter. We refer to this estimator as the
RegFeaL (regularised feature learning) estimator. As for the relevant features or variables
and dimension, we discuss their computation in Section 3.1.

3 Estimator Computation
The computation of the solution for the optimisation problems delineated by (3.8) and
(3.11) requires the employment of several strategic methodologies, which we will now
discuss.

3.1 Variational Formulation

We first use the following quadratic variational formulation, similar to the approach pre-
sented in Bach et al. [2012]. This formulation is necessary since it is not possible to directly
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optimise Equation (3.8) and Equation (3.11) due to the absence of closed-form solutions.
Using other classical optimisation methods such as gradient-based methods would be less
efficient as the overlapping group Lasso penalty we propose does not have efficient projec-
tion algorithms. Indeed, the variational formulation allows us to rewrite our optimisation
problems as the minimisation over two variables of a specific quantity. Subsequently, we
can alternate the minimisation with respect to each variable, leading to rapid convergence
in practice.

We first give the following Lemma which is adapted from Jenatton et al. [2010], which
provides a variational formulation of sums of powers.

Lemma 15 (Variational Formulation). Let r ∈ (0, 2) and u ∈ Rd
+, then

∥u∥r/2
r/2 =

( d∑
a=1

ur/2
a

)
= min

η∈Rd
+, ∥η∥r/(2−r)=1

d∑
a=1

ua

ηa
,

with minimum attained at η,∀a ∈ [d], ηa = u
(2−r)/2
a /

(∑d
b=1 u

r/2
b

)(2−r)/r.

Now, let us apply this approach to the penalty used for variable selection.

Lemma 16 (Variational Formulation of Variable Selection Penalty). Let f ∈ F written
as f = ∑

α∈Nd f̂(α)Hα and r ∈ (0, 2), then

Ωr
var(f) = min

η∈Rd
+, ∥η∥r/(2−r)=1

d∑
a=1

( ∑
α∈(Nd)∗

αa
1

c|α|
f̂(α)2

)
η−1

a

= min
η∈Rd

+, ∥η∥r/(2−r)=1

( ∑
α∈(Nd)∗

α⊤η−1 1
c|α|

f̂(α)2
)

,

where η−1 = (1/η1, . . . , 1/ηd) and where the minimum is reached for η such that

∀a ∈ [d], ηa =

(∑
α∈(Nd)∗ αa

1
c|α|

f̂(α)2
)(2−r)/2

(∑d
b=1

(∑
α∈(Nd)∗ αb

1
c|α|

f̂(α)2
)r/2)(2−r)/r

. (3.12)

Proof of Lemma 16. Recall Ωvar(f) =
(∑d

a=1
(∑

α∈(Nd)∗
αa
c|α|

f̂(α)2)r/2)1/r and use Lemma 15
with ua = ∑

α∈(Nd)∗ αa
1

c|α|
f̂(α)2.

We can then rewrite (3.8) as

fλ,µ
var , ηλ,µ

var = arg min
f∈F , η∈Rd

+

R̂(f) +
∑

α∈(Nd)∗

1
c|α|

f̂(α)2(λ + µα⊤η−1) (3.13)

subject to f =
∑

α∈Nd

f̂(α)Hα, ∥η∥r/(2−r) = 1.

Recall that Ωvar(f) =
(∑d

a=1
(∑

α∈(Nd)∗ αa
1

c|α|
f̂(α)2)r/2)1/2. Each term(∑

α∈(Nd)∗ αa
1

c|α|
f̂(α)2)r/2 quantifies the dependency of f on the variable xa. We then
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remark from the definition of ηλ,µ
var in Equation (3.12), that

∀a ∈ [d],
(
ηλ,µ

var
)r/(2−r)

a
=

(∑
α∈(Nd)∗ αa

1
c|α|

f̂λ,µ
var (α)2)r/2

∑d
b=1

(∑
α∈(Nd)∗ αb

1
c|α|

f̂λ,µ
var (α)2)r/2 .

Hence
(
ηλ,µ

var
)

a
represents the variation of fλ,µ

var which is due to xa. We can use ηλ,µ
var to es-

timate the relevant underlying variables by using conventional techniques such as thresh-
olding. Specifically, we can consider a variable xa to be relevant only if ηa is above some
predetermined threshold, i.e. Ŝ := {a ∈ [d],

(
ηλ,µ

var
)

a
> t} for some t > 0.

We can proceed in a similar manner for the feature learning setting.

Lemma 17 (Variational Formulation of Feature Learning Penalty). Let f ∈ F , Mf from
Equation (3.10), with Mf = UDU⊤ its eigendecomposition and r ∈ (0, 2), then

Ωr
feat(f) = min

Λ∈Rd×d
tr
(
Λ−1Mf

)
subject to Λ = R Diag (η)R⊤

R ∈ Od, η ∈ Rd
+, ∥η∥r/(2−r) = 1,

where the minimum is attained for

Λ = U Diag (η)U⊤ (3.14)

∀a ∈ [d], ηa = D
(2−r)/2
a

(∑d
b=1 D

r/2
b )(2−r)/r

.

This allows us to rewrite Equation (3.11) as

fλ,µ
feat, Λλ,µ

feat = arg min
f∈F , Λ∈Rd×d

R̂(f) + λΩ2
0(f) + µ tr

(
Λ−1Mf

)
subject to Λ = R Diag(η)R⊤

R ∈ Od, η ∈ Rd
+, ∥η∥r/(2−r) = 1.

Moreover, with Λ = R Diag(η)R⊤ as above, if we write f in the rotated basis
as f = ∑

α∈Nd f̂(α)Hα(R⊤·), and g = f(R·) = ∑
α∈Nd f̂(α)Hα, we have Mf = RMgR⊤

(Lemma 14). Therefore

tr (Λ−1Mf ) = tr
(

Diag (η−1)Mg
)

=
d∑

a=1
η−1

a

∑
α∈(Nd)∗

αa

c|α|
f̂(α)2

=
∑

α∈(Nd)∗

1
c|α|

f̂(α)2α⊤η−1.
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We can then rewrite Equation (3.15) as

fλ,µ
feat, Λλ,µ

feat = arg min
f∈F , Λ∈Rd×d

R̂(f) +
∑

α∈(Nd)∗

1
c|α|

f̂(α)2(λ + µα⊤η−1) (3.15)

subject to Λ = R Diag(η)R⊤

R ∈ Od, η ∈ Rd
+, ∥η∥r/(2−r) = 1

f =
∑

α∈Nd

f̂(α)Hα(R⊤·).

We see then that the feature learning problem can be viewed as an extension of the
variable selection problem, where we additionally optimise over any possible data rotation.
Conversely, the variable selection problem can be seen as a particular case of the feature
learning problem, where the rotation matrix R is fixed to the identity matrix.

To estimate the dimension of the underlying feature space P and the features them-
selves, we use the eigendecomposition of Λλ,µ

feat = (Rλ,µ
feat)⊤ Diag(ηλ,µ

feat)R
λ,µ
feat. By using

the columns of Rλ,µ
feat corresponding to the selected features, denoted as Ŝ := {a ∈

[d] |
(
ηλ,µ

feat

)
a

> t} for some threshold t > 0, we construct our feature estimator P̂ , i.e.,
P̂ :=

(
Rλ,µ

feat
)

Ŝ
. We see that by employing alternating minimisation, we are able to simul-

taneously learn the regression function and the underlying features.

3.2 Optimisation Procedure

We now discuss how to solve the optimisation problem using alternative minimisation,
drawing on techniques described in Bach et al. [2012]. In the following discussion, we will
focus on the feature learning setting. However, it is important to note that by simply
fixing R = Id in each equation, we can easily revert back to the variable selection case.

To solve Equation (3.15), we have observed that when the function f is fixed, the
optimal Λ can be determined using Equation (3.14), which involves the matrix Mf .4

When Λ is fixed, we seek to solve the optimisation problem

arg min
f∈F

R̂(f) +
∑

α∈(Nd)∗

1
c|α|

f̂(α)2(λ + µα⊤η−1)

subject to f =
∑

α∈Nd

f̂(α)Hα(R⊤·),

where Λ = R Diag(η)R⊤. However, this can only be solved if R̂ is known, i.e., for some
chosen loss function ℓ. Until the end of Section 3, we consider the quadratic loss which
is commonly used in regression problems and allows for closed-form solutions. Otherwise,
iterative optimisation algorithms need to be employed. The problem is then

arg min
f∈F

1
n

n∑
i=1

(
y(i) − f(x(i))

)2 +
∑

α∈(Nd)∗

1
c|α|

f̂(α)2(λ + µα⊤η−1) (3.16)

subject to f =
∑

α∈Nd

f̂(α)Hα(R⊤·).

4If f =
∑

α
f̂(α)Hα(R⊤·), to compute Mf , we can remark that with g = f(R·) =

∑
α

f̂(α)Hα, we have
the usual formula for Mg from Equation (3.10) and Mf = RMgR⊤.
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If we write for any x, x′ ∈ Rd

kΛ(x, x′) =
∑

α∈(Nd)∗

c|α|Hα(R⊤x)Hα(R⊤x′)
λ + µα⊤η−1 , (3.17)

the function kΛ verifies all properties required to be a reproducing kernel [Aronszajn, 1950].
The condition for a function to be a reproducing kernel is that it is symmetric and that
the associated kernel matrix is positive definite for any set of points. Specifically, for any
n ∈ N and x(1), . . . , x(n), the matrix KΛ = (kΛ(x(i), x(j)))i,j∈[n] must be positive definite
(where λ > 0 is useful in this context). We can then apply the theory of reproducing
kernel Hilbert spaces (RKHS). In this case, kΛ serves as the reproducing kernel for the
space F , with associated norm ∥ · ∥Λ, given by

∥f∥2Λ =
∑

α∈(Nd)∗

1
c|α|

f̂(α)2(λ + µα⊤η−1)

(note that f̂ depends on Λ through R). We can interpret the problem as a standard
kernel ridge regression, which we refer to as the “kernel point of view.” By applying the
representer theorem [Aronszajn, 1950], we know that the solution to Equation (3.16) takes
the form

f =
n∑

i=1
δΛ

i kΛ(x(i), ·) + δΛ
0 ,

where δΛ and δΛ
0 can be obtained in closed form using Y = (y(1), . . . , y(n))⊤ and K =

(kΛ(x(i), x(j)))i,j∈[n] as the minimisers of

δΛ, δΛ
0 = arg min

δ∈Rn, δ0∈R

1
n
∥Y −KΛδ − δ01∥22 + δ⊤KΛδ. (3.18)

It is worth noting that the shape of the kernel defined in Equation (3.17) implies
that features corresponding to α ∈ Nd with large values of α⊤η−1 are penalised more. If
ηa is small, indicating that it has been pushed down in the previous optimisation steps,
it suggests that variable xa or the direction (R⊤x)a may not be particularly useful for
prediction. In such cases, for these variables/directions to be retained, they would need
to contribute significantly more to the fit compared to others.

Furthermore, we observe that the parameter λ serves the purpose of ensuring numerical
stability when solving linear systems, particularly when α⊤η−1 can be null. We recommend
setting λ to a significantly smaller value than µ to achieve this desired stability (e.g,
λ = 10−8/d(2−r)/r in our experiments). In fact, it is possible to fix λ as a predetermined
value, eliminating the need for it to be treated as a hyper-parameter.

3.3 Sampling Approximation of the Kernel

We remark that the kernel described in Equation (3.17) is defined as an infinite sum,
which means it is not computable in practice. To overcome this challenge, we adopt an
approximation approach using sampling.

Let us define C(η) = ∑
α∈(Nd)∗

c|α|
λ+µα⊤η−1 . By defining h(α) = 1

C(η)
c|α|

λ+µα⊤η−1 , for all
α ∈ (Nd)∗ we obtain a probability distribution on (Nd)∗. Consequently, we can express
the kernel kΛ(x, x′) as C(η)Eα∼h

(
Hα(R⊤x)Hα(R⊤x′)

)
.
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Sampling from the distribution h can be challenging, particularly in high-dimensional
settings. Therefore, we employ importance sampling techniques. For the first choice c|α| =
1|α|≤M , the kernel kΛ(x, x′) can be expressed as

kΛ(x, x′) =
∑

α∈(Nd)∗,|α|≤M

Hα(R⊤x)Hα(R⊤x′)
λ + µα⊤η−1

=
(

M + d

d

)
Eα∼U{|α|≤M}

(
Hα(R⊤x)Hα(R⊤x′)

λ + µα⊤η−1

)
,

where U{|α| ≤M} is the uniform distribution over {α ∈ (Nd)∗, |α| ≤M}. Sampling from
this uniform distribution can be achieved by selecting a subset B of size d uniformly from
the set [M + d], sorting the subset into B1 < · · · < Bd, setting B0 = 0, and using the
differences between consecutive values to construct α. Specifically, for each a ∈ [d], we set
αa = Ba − Ba−1 − 1. If the resulting α is the null tuple, it is rejected, and the sampling
process is repeated.

For the choice c|α| = ρ|α| the kernel is

kΛ(x, x′) =
∑

α∈(Nd)∗

ρ|α|

λ + µα⊤η−1 Hα(R⊤x)Hα(R⊤x′).

We have developed a methodology called “group sampling” that addresses the chal-
lenges of sampling from the distribution h. To initialise the sampling, we set all compo-
nents of η to be equal. This choice ensures unbiasedness among the possible directions
while satisfying the constraint ∥η∥r/(2−r) = 1. As a result, the kernel takes the form

kΛ(x, x′) =
∑

α∈(Nd)∗

ρ|α|

λ + µ|α|d(2−r)/r
Hα(R⊤x)Hα(R⊤x′).

We can directly sample from the distribution proportional to ρ|α|

λ+µ|α|d(2−r)/r . The sam-
pling process involves two steps. First, we sample an integer k from the distribution

k ∼
(

k + d− 1
d− 1

)
ρk

λ + µd(2−r)/rk
.

To perform this sampling, we can precompute a table of probabilities for different values
of k up to a chosen maximum value (e.g., 40). We then normalise these probabilities and
use them to sample the value of k. Once we have obtained k, it represents the cardinality
of α. In the second step, we sample α uniformly from the set α ∈ (Nd)∗, |α| = k. This
sampling procedure is exact, except for the controlled approximation introduced by the
choice of the maximum value.

We can develop an importance sampling scheme for the other optimisation steps when
the components of η are not equal. Here are the steps.

1. Sort the components of η in ascending order and find the largest gap between consec-
utive values. Divide the set [d] into two groups: Group 1, containing the components
above the top of the gap, with size d1, and Group 2, containing the remaining com-
ponents, with size d2.

2. Define η̃1 as the minimum value among the components in Group 1, and η̃2 as the
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maximum value among the components in Group 2.

3. Sample k1 and k2 from the distribution

k1, k2 ∼
(

k1 + d1 − 1
d2 − 1

)(
k2 + d2 − 1

d2 − 1

)
ρk1+k2

λ + µ
(

k1
η̃1

+ k2
η̃2

) ,

where k1 and k2 represent |α(1)| and |α(2)| respectively, and α(1) corresponds to the
components in Group 1.

4. Sample α(1) uniformly from the set α ∈ (Nd1), |α| = k1, and sample α(2) uniformly
from the set α ∈ (Nd2), |α| = k2.

5. This yields

kΛ(x, x′) =
∑

α∈(Nd)∗

C(η̃)
C(η̃)

ρ|α|

λ + µα⊤η̃−1
λ + µα⊤η̃−1

λ + µα⊤η−1 Hα(R⊤x)Hα(R⊤x′)

= Eα∼Group sampling

(
C(η̃)λ + µα⊤η̃−1

λ + µα⊤η−1 Hα(R⊤x)Hα(R⊤x′)
)

,

with C(η̃) a normalising constant.

By using this importance sampling scheme, we can approximate the desired distribution
accurately, even when the components of η are not equal.

We observe that with the group sampling approach, the distribution of α is influenced
by η through the grouping process, as well as through the values of η̃1 and η̃2. As the
optimisation progresses, the sampled tuples exhibit specific patterns: in directions that
are deemed unimportant (corresponding to small values of ηa), αa tends to be close to
zero, while in directions that are considered important (corresponding to large ηa), αa is
more widely distributed.5

No matter the sampling scheme, we sample α(1), . . . , α(m) from some distribution with
importance weight w(α), yielding

kΛ(x, x′) ≈
m∑

j=1
w(α(i))Hα(j)(R⊤x)Hα(j)(R⊤x′).

We use this formula to compute the kernel matrix KΛ =
(
kΛ(x(i), x(j))

)
i,j∈[n]. Instead of

approximating the matrix KΛ to use in Equation (3.18), we can also consider the equivalent
explicit “feature point of view” by writing f in the form

f =
m∑

j=1
θjw(α(j))Hα(j)(R⊤·) + θ0H0,

where
θΛ, θΛ

0 = arg min
θ∈Rm, θ0∈R

1
n
∥Y − Φθ − θ01∥22 + ∥θ∥22, (3.19)

5It is worth noting that using the geometric distribution independently on each dimension of α would
have been a simpler approach. However, this method becomes highly inefficient as the dimensionality
increases, since it would involve sampling numerous α tuples with low importance weights (as determined
by Hα(R⊤x)Hα(R⊤x′)

λ+µα⊤η−1 ) due to their alignment with directions where η is very small (i.e., α⊤η−1 is small).
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with Φ ∈ Rn×m the matrix filled with w(α(j))Hα(j)(R⊤x(i)). This is computationally
advantageous when n > m. Otherwise, we use the kernel point of view. In both cases, we
can use (θ, θ0) or (δ, δ0) to rewrite f as ∑α∈Nd f̂(α)Hα(R⊤·). We remark that f̂(α) = 0
when α has not been sampled.

The pseudo-code for the RegFeaL method is provided in Algorithm 2.

for i ∈ [niter] do
if i = 0 then

η ← 1/d(2−r)/r;
R← Id;

else
if feature learning then

Update R and η as in Equation (3.14);
else

Update η as in Equation (3.12);
end

end
Sample α(1), . . . , α(m) using group sampling as in Section 3.3 with η ;
Compute importance weights w(α(1)), . . . , w(α(m));
Compute Hermite features Φ ∈ Rn×m, Φi,j = w(α(j))Hα(j)(R⊤x(i)) ;
if n > m then

Update θ as in Equation (3.19);
else

Update δ as in Equation (3.18);
end

end
Algorithm 2: RegFeaL pseudocode.

In terms of numerical complexity, each iteration has a cost of

O
(

nm′d + nd2
Hermite features

+ d2(m′)2 + d3

Mf and its eigendecomposition
+ md

Sampling
+ nm′ max(n, m′)

Computing θ or δ

)
,

where m′ is the number of unique tuples sampled (which is necessarily smaller than m,
and can be much smaller when η is sparse). The parameter m can be chosen to achieve a
balance between computational cost and performance, but selecting an excessively small
value for m may adversely affect performance. In practice, the number of iterations
required for convergence is typically very small (less than 10), as demonstrated in Section 5.
Additionally, it is worth noting that the computation cost of δ in the feature point of view
could be reduced through the use of the Nyström approximation [Rudi et al., 2015].

4 Statistical Properties
We now consider the statistical properties of RegFeaL. We always take r = 1 and we do
not consider the approximation due to the computation of the estimators in this section.
Our goal is to provide a high-probability bound on the expected risk of RegFeaL to gain
insights into its generalisation properties under minimal assumptions to obtain a very
general result. We do not consider the consistency of the e.d.r. space estimation, as this
usually requires much stronger assumptions, such as the linearity condition, the gradient
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along the relevant directions to be large enough in norm, or constraint on the loss to be
the square loss, for example Cook and Weisberg [1991], Jing Zeng and Zhang [2024].

We leverage the results presented in Bach [2024], which provide bounds on the max-
imum difference between empirical and expected risk, in terms of the expectation over
the class of functions with bounded norm. These bounds are expressed in terms of the
Rademacher complexity of the set {f ∈ F , Ω(f) ≤ D}, where D > 0 is a fixed bound. By
employing these results, we can obtain a probabilistic bound on the constrained estimator
and apply McDiarmid’s inequality [Boucheron et al., 2013] to establish a result in proba-
bility. Ultimately, Theorem 6 provides a probabilistic bound for the RegFeaL estimator,
leveraging the aforementioned results as well as the optimality conditions satisfied by the
estimator.

4.1 Setup

We start by making assumptions about the data used to train the model.

Assumption 7 (Data). D = (x(i), y(i))i∈[n] is a set of i.i.d data, with (X, Y ) a pair of
random variables such that ∀i ∈ [n], (x(i), y(i)) ∼ (X, Y ).

Notice that we do not make strong assumptions on the distribution of the data, such as
independence of the covariates or constraint to be elliptically contoured, nor do we require
is to be known a priori.

Let us introduce some definitions. Let (ck)k>0 be a non-null sequence of positive reals.
We define the function space F as Span

(
{H0} ∪ {Hα, for α ∈ (Nd)∗such that c|α|>0}

)
.

Let ℓ be a loss function on R×R, and let the expected risk R and the empirical risk R̂ be

R(f) = EX,Y

(
ℓ(Y, f(X))

)
and R̂(f) = 1

n

n∑
i=1

ℓ(y(i), f(x(i))).

We define the functional norm Ω(f) for any f ∈ F as Ω(f) := Ωfeat(f) + |f̂(0)| or
Ω(f) := Ωvar(f)+|f̂(0)|, where f̂(0) represents the constant coefficient of f . It is important
to note that the constraint on the constant coefficient is not necessary in practice, but
we include it for the purpose of theoretical analysis (we could also add a small weight on
|f̂(0)| to this effect). We define the regularised empirical risk R̂µ(f) for µ > 0 as follows

R̂µ(f) = 1
n

n∑
i=1

ℓ(y(i), f(x(i))) + µΩ(f).

We denote our estimator as fµ := arg minf∈F R̂µ. In order to establish theoretical results,
we will rely on the following assumptions.

Assumption 8 (Problem Assumptions).

1. The true regression function f∗ := arg minf∈F R(f) exists.

2. For some D > 0, the loss function ℓ is G-Lipschitz continuous in its second argument
for any value of its first argument, i.e., ∀y ∈ Y, ∀x, x′ ∈ X , ∀f ∈ F such that
Ω(f) ≤ D, |ℓ(y, f(x))− ℓ(y, f(x′))| ≤ G · |f(x)− f(x′)|.

3. For some D > 0, ℓ∞ := sup(x,y)∈X ×Y,f∈F ,Ω(f)≤D ℓ(y, f(x)) is finite.

4. The loss ℓ is convex on R× R .
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For our main result, we will use D = 2Ω(f∗). These assumptions are commonly used
in the analysis of nonparametric regression [Györfi et al., 2002]. Many commonly used loss
functions in regression problems, such as the quadratic loss, absolute mean error, Huber
loss, or logistic loss, are convex. The Lipschitz continuity condition holds for all of these
losses, except for the quadratic loss, which we handle separately, for example by exploiting
the boundedness of the data. If the data is bounded (i.e., X×Y is bounded in Rd×R), then
supx∈X ,f∈F ,Ω(f)≤D |f(x)| is bounded for any D > 0.6 We can then use the convexity of the
loss ℓ and boundedness of Y to justify that ℓ∞ is well-defined. For the quadratic loss, in this
setting, it satisfies Assumption 8.2 because (y− f(x))2− (y− f(x′))2 = (f(x′)− f(x))(y−
f(x)+y−f(x′)), and we can then take G := sup(x,y)∈X ×Y,f∈F ,Ω(f)≤D |y−f(x)+y−f(x′)|.

4.2 Rademacher Complexity

First, we apply the Lipschitz continuity assumption to bound the supremum over a set
of functions of the difference between the empirical risk and expected risk, in expectation
over the dataset.

Lemma 18 (Use of Gaussian Complexity). Let G be any set of functions, then under
Assumption 7, and Assumption 8.2,

ED

(
sup
f∈G

(
R(f)− R̂(f)

)
+ sup

f∈G

(
R̂(f)−R(f)

))
≤ 4

√
π

2 G ·Gn(G),

where
Gn(G) := ED,ε∼N (0,In)

(
sup
f∈G

1
n

n∑
i=1

εif(x(i))
)

is the Gaussian complexity of the set G [see Bartlett and Mendelson, 2002].

See Appendix A.2 for the proof, which we include for the sake of completeness. This is
a close variation of the work presented in Bach [2024]. We now need to bound the Gaussian
complexity, when we consider subsets of the working space F with bounded norm.

Lemma 19 (Bound on Gaussian Complexity). Let D > 0, with G := {f ∈ F , Ω(f) ≤ D}
with Ω defined as in Section 4.1, under Assumption 7, we have

Gn(G) ≤ D ·
√√√√ 1

n

(
1 +

∑
α∈(Nd)∗

c|α|
|α|

EX

(
Hα(X)2)).

We remark that the result depends heavily on the data distribution through the ex-
pectations EX(Hα(X)2) and the design of the norm through (ck)k>0. We discuss these in
more details in Section 4.4.

Proof of Lemma 19. We first consider the norm Ωvar. Let f ∈ G, we have

1
n

n∑
i=1

εif(x(i)) =
∑

α∈Nd

f̂(α)
( 1

n

n∑
i=1

εiHα(x(i))
)

=
∑

α∈Nd

f̂(α)ξ̂(α),

6This can be seen for Ωvar by noticing that Ω(f) can be written as |f̂(0)| +
∑d

a=1 Θa(f) ≥(
|f̂(0)|2 +

∑d

a=1 Θa(f)2)1/2, with the latter being an RKHS norm with reproducing kernel k(x, x′) =
1+
∑

α∈(Nd)∗
c|α|
|α| Hα(x)Hα(x′). It follows that f(x) = ⟨f, k(X, ·)⟩ ≤ f̂(0)+Ω(f)

√
k(x, x) which is bounded

if x is bounded.
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with ξ an infinite vector indexed by (Nd), ξ̂(α) = 1
n

∑n
i=1 εiHα(x(i)) . Therefore

sup
f∈G

1
n

n∑
i=1

εif(x(i)) = sup
f∈G

∑
α∈Nd

f̂(α)ξ̂(α) = D · Ω∗
var(ξ).

Now since Ωvar is the sum of d + 1 semi-norms Θ0, Θ1, . . . , Θd, with

Θ0(f) = |f̂(0)|

Θa(f) =
( ∑

α∈(Nd)∗

αa

c|α|
f̂(α)2

)1/2
, ∀a ∈ [d],

we have
Ω∗

var(ξ) = inf
ξ=
∑d

a=0 ξa

sup
a∈{0,...,d}

Θ∗
a(ξa).

This is an extension of the fact that the set Ω∗
var(ξ) ≤ 1 is the subdifferential of Ωvar

at f = 0, and thus the sum of the d subdifferentials of Ω0, . . . , Ωd at f = 0. We consider
a ∈ [d], we have

Ω∗
a(ξa)2 =

∑
α∈Nd,αa>0

ξ̂a(α)2 c|α|
αa

,

and Ω∗
0(ξ)2 = ξ̂(0)2.

If we choose ∀α ∈ (Nd)∗, ξ̂a(α) =
√

αa∑
b

√
αb

ξ̂(α), ξ̂0(α) = 0, ξ̂a(0) = 0 and ξ̂0(0) = ξ̂(0),
we have:

Ω∗
var(ξ)2 ≤ sup

(
sup
a∈[d]

∑
α∈Nd,αa>0

ξ̂a(α)2 c|α|
αa

, ξ̂0(0)2
)

≤ sup
(

sup
a∈[d]

∑
α∈Nd,αa>0

ξ̂(α)2 c|α|(∑
b
√

αb

)2 , ξ̂(0)2
)

≤
∑

α∈Nd

ξ̂(α)2
(

c|α|
|α|

1|α|>0 + 1|α|=0

)
.

Let W 2 = Diag
( c|α|

|α| 1|α|>0 + 1|α|=0
)

and Φ the design matrix of all Hα(x(i)) (with n rows
and infinitely many columns indexed with α ∈ Nd). We have ξ̂ = 1

nΦ⊤ε, and

Ω∗
var(ξ)2 ≤ ξ̂⊤W 2ξ̂ = 1

n2 ε⊤ΦW 2Φ⊤ε.

We compute the expectation of Ω∗
var(ξ)2 for ε ∼ N (0, In), and get

Eε
(
Ω∗

var(ξ)2) ≤ Eε

( 1
n2 ε⊤ΦW 2Φ⊤ε

)
= 1

n2 tr
(
ΦW 2Φ⊤)

= 1
n

+ 1
n2

∑
α∈(Nd)∗

n∑
i=1

c|α|
|α|

Hα(x(i))2.
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We now take expectations with regards to the data D and get

ED,ε

(
Ω∗

var(ξ)2) ≤ 1
n

∑
α∈(Nd)∗

c|α|
|α|

EX

(
Hα(X)2)+ 1

n
.

Using Cauchy-Schwartz, ED,ε

(
Ω∗

var(ξ)
)
≤
√

1
n

(
1 +∑

α∈(Nd)∗
c|α|
|α| EX

(
Hα(X)2)).

From Lemma 14, we have

Ωfeat(f) ≥ inf
R∈Od

Ωvar(f(R·)).

Then, for an infinite vector ξ indexed by Nd, with ξ̂(α) = 1
n

∑n
i=1 εiHα(x(i)) and ξR

an infinite vector indexed by Nd with ξ̂R(α) = 1
n

∑n
i=1 εiHα(Rx(i)) , we have Ω∗

feat(ξ) ≤
supR∈Od

Ω∗
var(ξR).

Therefore
sup

R∈Od

Ω∗
var(ξR) ≤ sup

R∈Od

1
n2 ε⊤ΦRW 2Φ⊤

Rε,

with ΦR the design matrix of all Hα(Rx(i)) (with n rows and infinitely many columns
indexed with α ∈ Nd). Therefore using Lemma 13,

ε⊤ΦRW 2Φ⊤
Rε =

∑
i,j

εiεj

(
1 +

∑
α∈(Nd)∗

c|α|
|α|

Hα(Rx(i))Hα(Rx(j))
)

=
∑
i,j

εiεj

(
1 +

+∞∑
k=1

ck

k

∑
α∈Nd, |α|=k

Hα(Rx(i))Hα(Rx(j))
)

=
∑
i,j

εiεj

(
1 +

+∞∑
k=1

ck

k

∑
|α|=k

Hα(x(i))Hα(x(j))
)

= ε⊤ΦW 2Φ⊤ε,

which is independent of R, therefore yielding exactly the same result as for Ωvar once
expectation with regards to ε and the data is taken.

4.3 Statistical Convergence

To gain insight into the proof technique, we initially establish an expectation-based result
for the constrained estimator instead of the regularised estimator. We bound the expected
risk of the function that minimises the empirical risk over the set of functions with a
bounded norm, in expectation over the dataset. To accomplish this, we use Lemma 18
and Lemma 19.

Lemma 20 (Expected risk of Constrained Estimator). Let D > Ω(f∗) and let fD =
arg minf∈F , Ω(f)≤D R̂(f), under Assumptions 7, 8.1 and 8.2,

ED
(
R(fD)

)
≤ R(f∗) + 4GD√

n

√
π

2

√√√√1 +
∑

α∈(Nd)∗

c|α|
|α|

EX

(
Hα(X)2).

Proof of Lemma 20. With G := {f ∈ F , Ω(f) ≤ D}, we have the classical decomposition
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of the excess risk

R(fD)−R(f∗) = R(fD)− R̂(fD) + R̂(fD)− R̂(f∗) + R̂(f∗)−R(f∗)
≤ R(fD)− R̂(fD) + R̂(f∗)−R(f∗)
≤ sup

f∈G
R(f)− R̂(f) + sup

f∈G
R̂(f)−R(f).

We then take the expectation over the data on both sides and use Lemma 18 and
Lemma 19

ED
(
R(fD)

)
−R(f∗) ≤ ED

(
sup
f∈F
R(f)− R̂(f) + sup

f∈F
R̂(f)−R(f)

)
≤ 4

√
π

2 G ·Gn(G)

≤ 4GD√
n

√
π

2

√√√√1 +
∑

α∈(Nd)∗

c|α|
|α|

EX

(
Hα(X)2),

hence the desired result.

In addition to the expectation-based result, obtaining a result with high probability
for the constrained estimator is also of interest. This is achieved in Lemma 23, presented
in Appendix A.3, by using McDiarmid’s inequality [Boucheron et al., 2013]. To apply this
inequality, an additional assumption is required: the boundedness of the loss (Assump-
tion 8.3). However, the most significant and relevant result is the one obtained for the
estimator that minimises the regularised empirical risk. This result is more realistic and
imposes the additional requirement of convexity of the loss function.

Theorem 6 (High-Probability Bound on Expected Risk of Regularised Estimator). Under
Assumption 7 and Assumptions 8.1, 8.2, 8.3 with D = 2Ω(f∗), 8.4, then for any δ ∈ (0, 1),
with the choice of regularising parameter

µ = 8G√
n

√
π

2

√√√√1 +
∑

α∈(Nd)∗

c|α|
|α|

EX

(
Hα(X)2)+ ℓ∞2

√
2

Ω(f∗)
√

n

√
log 2

δ
,

with probability larger than 1− δ

R(fµ) ≤ R(f∗)

+ Ω(f∗)
(16G√

n

√
π

2

√√√√1 +
∑

α∈(Nd)∗

c|α|
|α|

EX

(
Hα(X)2))+ ℓ∞4

√
2√

n

√
log 1

δ

and Ω(fµ) ≤ 2Ω(f∗).

We now discuss the meaning of Theorem 6. The theorem states that with high prob-
ability, under the appropriate choice of the regularisation parameter, the norm of the
estimator fµ, Ω(fµ), is bounded by twice the norm of the true regression function f∗,
Ω(f∗). We remark that the choice of regularisation parameter depends on Ω(f∗), how-
ever, this is not the case in the bounded setting, see the discussion in Section 4.4. Under
Assumption 5 (feature learning setting) or Assumption 6 (variable selection setting), we
know that Ω(f∗) does not depend explicitly on d but only on s, the underlying number of
variables or dimension of the linear subspace.
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The norm Ω(f∗) also helps us bound the difference between the expected risk of the
estimator R(fµ) and the expected risk of the true regression function R(f∗). This dif-
ference, denoted as R(fµ) −R(f∗), has a dependency on the number of samples n, with
a convergence rate of n−1/2, as expected for a Lipschitz loss and a well-specified model.
However, the dependency on the dimension d of the original data is somewhat concealed
in
√

1 +∑
α∈(Nd)∗

c|α|
|α| EX

(
Hα(X)2). We provide a detailed analysis of this dependency for

specific choices of the data distribution X and the sequence (ck)k>0 in Section 4.4.

Proof of Theorem 6. The proof is adapted from Bach [2024]. Define fµ∗ as the minimiser
of Rµ := R+ µΩ over F . Now, for D > 0, τ > 0 define the following convex set

CD,τ = {f ∈ F , Ω(f) ≤ D,Rµ(f)−Rµ(fµ∗) ≤ τ}.

It has boundary

∂CD,τ = {f ∈ F , Ω(f) ≤ D,Rµ(f)−Rµ(fµ∗) = τ},

i.e., the second constraint is the saturated one, for well chosen D and τ . This is because,
if we consider a f such that Ω(f) = D, since the optimality conditions for fµ∗ give
that Ω∗(R′(fµ∗)) ≤ µ, (with R′ any subgradient of R which necessarily exists because R
is convex since ℓ is convex) we have

Rµ(f)−Rµ(fµ∗) = R(f) + µΩ(f)−R(fµ∗)− µΩ(fµ∗)
≥ ⟨R′(fµ∗), (f − fµ∗)⟩+ µΩ(f)− µΩ(fµ∗)
by convexity with ⟨·, ·⟩ associated to Ω
≥ −Ω∗(R′(fµ∗)

)
Ω(f − fµ∗) + µΩ(f)− µΩ(fµ∗)

by Holder’s inequality
≥ −µΩ(f − fµ∗) + µΩ(f)− µΩ(fµ∗) by optimality of fµ∗

≥ 2µΩ(f)− 2µΩ(fµ∗) by the triangular inequality
≥ 2µD − 2µΩ(fµ∗) since Ω(f) = D,

≥ 2µΩ(f∗) by choosing D = 2Ω(f∗), since Ω(f∗) ≥ Ω(fµ∗)
≥ τ, by choosing τ = µΩ(f∗),

hence the desired result on the active constraint of the boundary. We now fix τ = µΩ(f∗)
and D = 2Ω(f∗).

Now if fµ does not belong to CD,τ , since fµ∗ does, there is an element f in the
segment [fµ, fµ∗] that belongs to ∂CD,τ , i.e, Ω(f) ≤ D and Rµ(f)−Rµ(fµ∗) = τ . Because
the loss is convex, we have that R̂µ(f) ≤ max{R̂µ(fµ), R̂µ(fµ∗)} = R̂µ(fµ∗). Therefore

τ = Rµ(f)−Rµ(fµ∗) ≤ Rµ(f)−Rµ(fµ∗) + R̂µ(fµ∗)− R̂µ(f)
≤ R(f)− R̂(f) + R̂(fµ∗)−R(fµ∗). (3.20)

From the proof of Lemma 23, for all δ ∈ (0, 1)

sup
f∈F , Ω(f)≤D

R(f)− R̂(f) + sup
f∈F , Ω(f)≤D

R̂(f)−R(f)

≤ 4GD√
n

√
π

2

√√√√1 +
∑

α∈(Nd)∗

c|α|
|α|

EX

(
Hα(X)2)+ ℓ∞2

√
2√

n

√
log 1

δ
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with probability larger than 1− δ.
We apply this to the RHS of Equation (3.20) (as Ω(f) ≤ D and Ω(fµ∗) ≤ D), which

is smaller than 4GD√
n

√
π
2

√
1 +∑

α∈(Nd)∗
c|α|
|α| EX

(
Hα(X)2) + ℓ∞2

√
2√

n

√
log 1

δ with probability
larger than 1− δ.

Now if τ is such that

4GD√
n

√
π

2

√√√√1 +
∑

α∈(Nd)∗

c|α|
|α|

EX

(
Hα(X)2)+ ℓ∞2

√
2√

n

√
log 1

δ
≤ τ, i.e.,

Ω(f∗) 8G√
n

√
π

2

√√√√1 +
∑

α∈(Nd)∗

c|α|
|α|

EX

(
Hα(X)2)+ ℓ∞2

√
2√

n

√
log 1

δ
≤ µΩ(f∗)

8G√
n

√
π

2

√√√√1 +
∑

α∈(Nd)∗

c|α|
|α|

EX

(
Hα(X)2)+ ℓ∞2

√
2√

nΩ(f∗)

√
log 1

δ
≤ µ

then fµ belongs to CD,τ with probability larger than 1− δ.
If we choose µ = 8GD√

n

√
π
2

√
1 +∑

α∈(Nd)∗
c|α|
|α| EX

(
Hα(X)2)+ ℓ∞2

√
2

Ω(f∗)
√

n

√
log 1

δ , then

Rµ(fµ) ≤ Rµ(fµ∗) + τ

≤ Rµ(fµ∗) + τ

≤ Rµ(f∗) + τ

≤ R(f∗) + µΩ(f∗) + τ

≤ R(f∗) + 2µΩ(f∗)
≤ R(f∗)

+ Ω(f∗)
(16G√

n

√
π

2

√√√√1 +
∑

α∈(Nd)∗

c|α|
|α|

EX

(
Hα(X)2))+ ℓ∞4

√
2√

n

√
log 1

δ

and Ω(fµ) ≤ D = 2Ω(f∗) with probability larger than 1− δ.

4.4 Dependence on Problem Parameters

As we have seen, Theorem 6 depends on some quantities we detail now. First, we provide
a definition of subgaussian real variables, as given by Vershynin [2018].

Definition 3 (Subgaussian Variables). Let Z be a real-valued (not necessarily centred)
random variable. Z is subgaussian with variance proxy σ2 if and only if

∀t > 0, max (P(Z ≥ t),P(Z ≤ −t)) ≤ e− t2
2σ2 .

Data distribution. To begin, we aim to establish an upper bound for the expectation
of the squared Hermite polynomials over the covariates.

Lemma 21 (Analysis of Data-Dependent Terms in Theorem 6). Let α ∈ Nd.

1. If X ∼ N (0, Id), then
EX(Hα(X)2) = 1.
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2. If X is such that ∥X∥2 ≤ R a.s., then

EX(Hα(X)2) ≤ e
R2
2 .

3. If X is such that ∥X∥2 is a subgaussian variable with variance proxy bounded by σ2 <
1/(36e), then

EX(Hα(X)2) ≤ e36eσ2 ≤ e.

The proof of this lemma is provided in Appendix A.4. Note that independence between
the coordinates is not required, except in the first case, which is an illustration of the
definition of the Hermite polynomials. It is worth noting that except in the Gaussian
case, the bounds may not be ideal with respect to their dependency on d. However, these
bounds rely heavily on the bound for Hermite polynomials in Equation (3.3), which is valid
for all points on the real line and for all one-dimensional Hermite polynomials. Thus, it
is expected that better bounds in expectation are possible.

Choice of (ck)k>0. The quantities in Theorem 6 are influenced by the design of the
penalty, which is determined by the choice of the sequence (ck)k>0. This dependency is
observed in Ω(f∗), ℓ∞, and

√
1 +∑

α∈(Nd)∗
c|α|
|α| EX

(
Hα(X)2). It is worth noting that the

bounds provided in Lemma 21 do not rely on the specific value of α. Therefore, our focus
is now on bounding the summation term ∑

α∈(Nd)∗
c|α|
|α| .

Lemma 22 (Analysis of Terms Depending on (ck)k>0 in Theorem 6). If c|α| = ρ|α|,
with ρ ∈ (0, 1) ∑

α∈(Nd)∗

c|α|
|α|
≤ 1

(1− ρ)d

and if c|α| = 1|α|≤M , ∑
α∈(Nd)∗

c|α|
|α|
≤ M + 1

d

(
M + d

M + 1

)
.

The proof of this result can be found in Appendix A.5. By combining the different
results, in the case of bounded data, for example, we can derive a corollary of Theorem 6
as follows
Corollary 1 (High-Probability Bound on Expected Risk of Regularised Estimator for
Bounded Data). Under Assumption 7 and Assumptions 8.1, 8.2, 8.3 with D = 2Ω(f∗),
8.4, if ∥X∥2 ≤ R a.s., (ck)k>0 = (ρk)k>0, then for any δ ∈ (0, 1), with the choice of
regularising parameter

µ = G√
n

√
1 + eR2/2

(1− ρ)d

(
8
√

π

2 + 2
√

2
√

log 2
δ

)
,

with probability larger than 1− δ

R(fµ) ≤ R(f∗) + Ω(f∗) G√
n

√
1 + eR2/2

(1− ρ)d

(
16
√

π

2 + 4
√

2
√

log 2
δ

)
and Ω(fµ) ≤ 2Ω(f∗).

The proof is provided in Appendix A.6. We note that the choice of the regularisation
parameter is independent of the unknown norm Ω(f∗) or the distribution of X, as long
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as R is known. In the derived bound, the value of G can be independent of d for certain
loss functions such as the logistic loss. We observe that Ω(f∗) does not depend on the
dimension d, but solely on the number of variables or the dimension of the linear subspace
s. It is important to note that the method exhibits a strong dependence on the dimension,
which does not overcome the curse of dimensionality. However, this is merely the first step
towards solving the multi-index model through regularised empirical risk minimisation,
leaving room for future work and improvements.

5 Numerical Study
In this section, we present the numerical results that demonstrate the behaviour and
performance of RegFeaL. The implementation of the estimator, as well as the code
to run the experiments, can be accessed online at https://github.com/BertilleFollain/
RegFeaL. The RegFeaL estimator class is designed to be compatible with the Scikit-learn
API [Pedregosa et al., 2011], ensuring seamless integration with existing machine learning
workflows.

5.1 Setup

We describe the experiment setup, which includes data simulation, training procedure and
metrics for evaluation.

Data. In each generated dataset, depending on whether we consider feature learning or
variable selection, we construct the linear subspace P differently. In the feature learning
case, we sample a matrix from the set of d× d orthogonal matrices Od and select its first
s columns to form P . For variable selection, we simply consider the first s variables to be
the relevant ones. Note that while our experiments were conducted with independently
generated covariates, our method is invariant to rotations (in the feature learning case)
and sign changes of the data (in both feature learning and variable selection). As such, it
is robust to potential correlation between the covariates. The i.i.d dataset (x(i), y(i))i∈[n]
is then generated as follows

X ∼ U{[−
√

3,
√

3]}d

f∗(x) = sin(2(P ⊤x)1) + sin(2(P ⊤x)2), ∀x ∈ Rd (sinus dataset)
f∗(x) = (P ⊤x)1 + (P ⊤x)2 − (P ⊤x)2

1 − (P ⊤x)2
2 + 2(P ⊤x)1(P ⊤x)3

2 − 4,

∀x ∈ Rd (polynomial dataset)
Y = f∗(X) + σε, ε ∼ N (0, 1).

Each component of X has mean 0 and variance 1. Notably, in both datasets, the true
regression function f∗ depends on s = 2 linear combinations of the original variables.
The importance of the noise can be controlled through the parameter σ. The test set
(x(i)

test, y
(i)
test)i∈[ntest] is generated in a similar manner as the training set.

Training. The loss that we consider is the quadratic loss. We train RegFeaL on the
training set with fixed values of λ and r, and we cross-validate on µ and ρ. The number
of iterations niter depends on the experiment. Some of the parameters are the same in all
experiments, such as ntest = 5000, s = 2, λ = 10−8/d(2−r)/r, r = 0.33.
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The values of the grid used for cross-validation can be found in Appendix B. The
training pipeline differs between Experiment 1 and Experiments 2 and 3.

In Experiment 1, for each parameter tuple (ρ, µ), we estimate the number of relevant
dimensions ŝ using ŝ := |{a ∈ [d], (ηλ,µ

feat)
r/(2−r)
a ≥ 1/d}|. Recall that η

r/(2−r)
a , represents

the importance of feature a, and at initialisation, it is set to 1/d for all a ∈ [d]. We then
select P̂ as the set of ŝ eigenvectors of Λλ,µ

feat corresponding to the ŝ largest eigenvalues.
Finally, we train a final regressor using Multivariate Adaptive Regression Splines (MARS)
[Friedman, 1991] on the dataset (P̂ ⊤x(i), y(i))i∈[n].

In Experiments 2 and 3, we simply use the output fλ,µ
feat of Algorithm 2 as the prediction

function. In both cases, the R2 score is used as the evaluation metric, which is described
in Equation (3.21).

Metrics. We evaluate the performance of RegFeaL using two metrics: the R2 score
[Wright, 1921] for regression performance and an adapted Grassmannian distance for fea-
ture learning performance.

The R2 score is computed as

1−
∑ntest

i=1 (y(i)
test − y

(i)
pred)2∑ntest

i=1 (y(i)
test − ȳtest)2

, (3.21)

where ȳtest is the mean of the test response values. The R2 score can be computed on
both the training and test sets. A score of 1 indicates the best possible performance, while
a score of −∞ indicates the worst performance. A constant estimator that predicts the
average response value corresponds to a score of 0.

For the feature learning score, we compute the Grassmannian distance between the true
subspace P and the estimated subspace P̂ , which corresponds to the s largest eigenvalue
for the score computation. Note that the knowledge of s is only necessary to compute this
score and not necessary for training. Note also that this is not the same P̂ that was used
to retrain MARS in Experiment 1, as the dimension of that one is estimated. The score
is defined as

∥P (P ⊤P )−1P ⊤ − P̂ (P̂ ⊤P̂ )−1P̂ ⊤∥2/(2s) if s ≤ d/2
∥P (P ⊤P )−1P ⊤ − P̂ (P̂ ⊤P̂ )−1P̂ ⊤∥2/(2(d− s)) if s > d/2,

where s is the number of relevant dimensions. The best possible score is 1, indicating a
perfect match between the true and estimated subspaces, while a score of 0 indicates no
correspondence between the subspaces.

In the setting of variable selection, this discussion can be adapted as discussed in
Section 3. The omitted details of the experiments can be found in Appendix B.

5.2 Results

We now provide the results of the experiments.

Experiment 1. In this experiment, we investigate the dependence on the dimension of
the variables d and the number of samples n. We perform the training procedure described
earlier, including the retraining step using MARS [Friedman, 1991] on the projected data.
We evaluate the performance on both the sinus dataset and the polynomial dataset with
noise levels σ = 0.5 and σ = 2.5 respectively. For the sinus dataset, we consider both the
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variable selection and feature learning settings. We conduct a total of niter = 5 iterations,
and the grid used for cross-validation can be found in Appendix B.

To provide a comparison, we also include the performance of the state-of-the-art
method MAVE [Xia et al., 2002], which is based on local averaging and does not use
regularisation. In our implementation, we follow the recommended procedure for MAVE,
which involves first training the Outer Product of Gradients (OPG) method to determine
the effective dimensionality reduction (e.d.r) space. We use cross-validation to select the
underlying dimension of the space and then retrain the model using MARS on the pro-
jected data. This allows us to compute the R2 score. For the feature learning score, we
compute it based on the learned effective dimensionality reduction (e.d.r) space. Specif-
ically, we choose s = 2 as the dimension of the subspace to compute the score, following
the same approach as RegFeaL.

Additionally, we include the R2 score for Kernel Ridge, which uses kernel ridge
regression with the kernel k(x, x′) = ∑

α∈(Nd)∗ c|α|Hα(x)Hα(x′) and the hyperparameter
λ, which we cross-validate over. To provide a comprehensive analysis, we also display the
noise level, which represents the best achievable score considering the noise level σ. We
repeat the entire experiment five times, each time with different data, and present the
average results with error bars of ±σexp/

√
5, where σexp is the standard deviation of the

scores across the repetitions. The results of the experiment can be found in Figures 3.1,
3.2, and 3.3.

(a) R2 score d = 10 (b) R2 score, d = 40

Figure 3.1: Performance dependency on d and n for the sinus dataset in the variable
selection setting.

In all figures, we observe that the performance improves with a higher number of
samples (n), which is expected, while it deteriorates with a larger dimension (d), which is
typical behaviour.

In Figure 3.1, we focus on the R2 score for the sinus dataset in the variable regression
setting. We observe that RegFeaL performs well in both dimensions (10 and 40) without
requiring a large number of samples. However, Kernel Ridge fails in dimension 40 as
the kernel cannot effectively capture the dependency on only 2 variables. As for MAVE,
it does not benefit from the knowledge that this is a variable selection problem, unlike
RegFeaL, resulting in a higher sample requirement, particularly in dimension 40.

In Figure 3.2, we examine the R2 score and the feature learning score for the sinus
dataset in the feature learning setting. We observe that MAVE and RegFeaL exhibit
similar behaviour in dimension 10, reaching the noise level for the R2 score and achieving
a perfect feature learning score with enough samples. However, in dimension 40, MAVE
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(a) R2 score, d = 10 (b) Feature learning score, d = 10

(c) R2 score, d = 40 (d) Feature learning score, d = 40

Figure 3.2: Performance dependency on d and n for the sinus dataset in the feature
learning setting.

struggles significantly when the number of samples is low, while RegFeaL requires a
substantially larger sample size to accurately learn the e.d.r. space. Our interpretation is
that in this setting, where the true regression function uses a sinus, RegFeaL is hindered
by its definition using a basis of polynomials.

In Figure 3.3, we investigate the R2 score and the feature learning score for the polyno-
mial dataset in the feature learning setting. The feature learning performance of MAVE
and RegFeaL is similar in this scenario. Regarding the R2 score, Kernel Ridge en-
counters difficulties in dimension 40 as it does not benefit from the underlying hidden
structure. In dimension 10, RegFeaL performs similarly to MAVE, but in dimension 40,
it outperforms MAVE as MAVE tends to be overly restrictive and consistently underes-
timates the number of linear features required to provide a good fit when the e.d.r. space
is not perfectly learnt. In contrast, RegFeaL is less conservative, allowing us to leverage
more features when the number of samples is too low to accurately estimate them.

Experiment 2. In this experiment, we investigate the impact of the number of random
features m (as discussed in Section 3.3) on the R2 score and feature learning score for
different values of n. The dimension d is fixed at 10, while the true underlying dimension s
is 2. We consider the noiseless setting σ = 0 and use the sinus dataset. The same
methodology is applied for error bar computation as in Experiment 1. The results are
presented in Figure 3.4.
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(a) R2 score, d = 20 (b) Feature learning score, d = 20

(c) R2 score, d = 40 (d) Feature learning score, d = 40

Figure 3.3: Performance dependency on d and n for the polynomial dataset in the feature
learning setting.

(a) R2 score (b) Feature learning score

Figure 3.4: Influence of the number of random features.
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We observe that both the R2 score and feature learning score improve with an increase
in the number of random features m. This observation aligns with the discussion in
Section 3.3, where a larger value of m leads to a better approximation of the kernel kΛ,
and allows for a wider range of α and Hα, resulting in enhanced descriptive power and
improved fit and prediction of the subspace. However, we note that beyond a certain value
of m, the performance improvement levels off while computational costs continue to rise.
This suggests that choosing excessively large values of m does not provide any significant
benefit.

Experiment 3. In this experiment, we maintain the number of samples n = 5000,
the number of random features m = 2500, the dimension d = 10, and the underlying
dimension s = 2 fixed. We work with the noiseless sinus dataset, i.e., σ = 0, and examine
the training behaviour of RegFeaL over the iterations. We train the model using cross-
validation based on the R2 score and set niter = 10. The results are depicted in Figure 3.5.

(a) R2 score (b) Feature learning score

(c) η
r/(2−r)
a ,∀a ∈ [d] (d) Empirical distribution of α

Figure 3.5: Training behaviour.

In Figure 3.5a, we observe that the R2 score improves across the iterations on both
the test set and the training set. However, the behaviour is not strictly increasing on the
training set. This can be attributed to the fact that the kernel approximation differs at
each iteration, leading to variations in the fit.

Figure 3.5b demonstrates that the features are learned more rapidly than the fit. It
is important to note that the feature learning score assumes knowledge of the underlying
dimension s = 2. Hence, an important question is whether the estimated value of s is
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accurate.
In Figure 3.5c, we observe the values of η

r/(2−r)
a for all a ∈ [d] across the iterations.

Recall that ∑d
a=1 η

r/(2−r)
a = 1 and that η

r/(2−r)
a represents the relative importance of fea-

ture (R⊤x)a. Initially, all η
r/(2−r)
a are equal to 1/d. As the training progresses, most of the

components of ηr/(2−r) decrease, while two components increase, surpassing the threshold
of 1/d. These two components correspond to the relevant dimensions, indicating that the
correct number of dimensions would be easily predicted. Additionally, we observe that
these two components of η have relatively similar values, which aligns with the symmetry
of the regression function in this example.

Figure 3.5d displays the empirical density (in log scale) of αa for two different values of
a ∈ [d] (specifically, asmall := arg mina∈[d] ηa and alarge := arg maxa∈[d] ηa for the final η) at
two different iterations: the first and last iteration. During the first iteration, the distri-
butions of αa for alarge and asmall are equal, which aligns with the initialisation discussed
in Section 3.3 (all components of η are equal). However, at the end of the optimisation,
we observe that the distribution of αasmall , corresponding to a non-important linear fea-
ture, remains almost constant at 0. Conversely, the distribution of αalarge , representing an
important linear feature, is more widely spread, which is beneficial to the fit.

6 Conclusion
We addressed the challenge of prediction function estimation in multi-index models by
proposing a novel approach RegFeaL. Our method combines empirical risk minimisation
with derivative-based regularisation to simultaneously estimate the prediction function,
the relevant linear transformation, and its dimension. By leveraging the orthogonality and
rotation invariance properties of Hermite polynomials, RegFeaL captures the underlying
structure of the data. Through alternative minimisation, we iteratively rotate the data to
better align it with the leading dimensions.

Theoretical results support the statistical consistency of the expected risk of our esti-
mator and provide explicit rates of convergence. We demonstrated the performance and
effectiveness of our method through extensive empirical experiments on diverse datasets.
One of the strengths of our approach is that it does not rely on strong assumptions about
the distribution shape or prior knowledge of the subspace dimension.

However, we acknowledge that our method is still subject to the curse of dimension-
ality, as indicated by the theoretical results showing an exponential dependence on the
dimension of the covariates. Nonetheless, we believe that our findings will contribute to
further developments in representation learning and high-dimensional data analysis. Reg-
ularisation is a versatile approach that can be applied to a wide range of problems where
an empirical risk can be formulated, foregoing the limitations of some methods solely based
on the square loss in supervised learning.

There are several interesting directions for future research. One possibility is explor-
ing alternative bases other than Hermite polynomials. Additionally, investigating more
efficient algorithms and strategies for handling high-dimensional data could be valuable.
Furthermore, examining the applicability of our approach to various types of problems
and datasets would also be worth pursuing.
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Appendix
A Additional Proofs and Results

A.1 Proof of Lemma 13

Proof of Lemma 13. We denote by N (0, Id) the d-dimensional normal distribution with
mean 0 ∈ Rd and covariance matrix Id. For any k ∈ N, x, x′ ∈ Rd, using ∀z ∈ R, hk(z) =

1√
k!EY ∼N (0,1)(z + iY )k (which can be shown by recurrence), we have

∑
|α|=k

Hα(x)Hα(x′) =
∑

|α|=k

d∏
a=1

hαa(xa)hαa(x′
a)

=EY,Y ′∼N (0,Id)

( ∑
|α|=k

d∏
a=1

1
αa! (xa + iYa)αa(x′

a + iY ′
a)αa

)

= 1
k!EY,Y ′∼N (0,Id)

((
x⊤x′ − Y ⊤Y ′ + i(x⊤Y ′ + Y ⊤x′)

)k)
.

This shows rotational invariance, that is, for any orthogonal matrix R ∈ Od,∑
|α|=k

Hα(x)Hα(x′) =
∑

|α|=k

Hα(Rx)Hα(Rx′).

A.2 Proof of Lemma 18

Proof of Lemma 18. Define H = {h : (x, y) ∈ X × Y → ℓ(y, f(x)), for f ∈ G}. We have
that

sup
f∈G

(
R(f)− R̂(f)

)
+ sup

f∈G

(
R̂(f)−R(f)

)
= sup

h∈H

(
E(h(z))− 1

n

n∑
i=1

h(z(i))
)

+ sup
h∈H

( 1
n

n∑
i=1

h(z(i))− E(h(z))
)

.

We define the Rademacher complexity of the set H by

Rn(H) = E
D,ε∼

(
U{−1,1}

)n

(
sup
h∈H

1
n

n∑
i=1

εih(z(i))
)

,

where ε ∼
(
U{−1, 1}

)n means that each component of ε is independent and follows the
uniform distribution over the set {−1, 1}.

Using Proposition 4.2 from Bach [2024], we obtain

ED

(
sup
h∈H

E(h(z))− 1
n

n∑
i=1

h(z(i))
)
≤ 2Rn(H)

ED

(
sup
h∈H

1
n

n∑
i=1

h(z(i))− E(h(z))
)
≤ 2Rn(H).
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Now from Assumption 8.2 and using Proposition 4.3 from Bach [2024]

Rn(H) ≤ G ·Rn(G),

with
Rn(G) = E

D,ε∼
(

U{−1,1}
)n

(
sup
f∈G

1
n

n∑
i=1

εif(x(i))
)

.

We have from Exercise 4.9 from Bach [2024] that Rn(G) ≤
√

π
2 Gn(G). Combining all

inequalities yields the desired result.

A.3 Lemma 23 and its Proof

Lemma 23. Under Assumption 7, Assumptions 8.1, 8.2, 8.3, with D ≥ Ω(f∗), and fD :=
arg minf∈F , Ω(f)≤D R̂(f), for any δ ∈ (0, 1), with probability larger than 1− δ

R(fD) ≤ R(f∗) + 4GD√
n

√
π

2

√√√√1 +
∑

α∈(Nd)∗

c|α|
|α|

EX

(
Hα(X)2)+ ℓ∞2

√
2√

n

√
log 1

δ
.

Proof of Lemma 23. Define G := {f ∈ F , Ω(f) ≤ D}. We apply McDiarmid’s inequality
[Boucheron et al., 2013] to supf∈G R(f)−R̂(f)+supf∈G R̂(f)−R(f), which has bounded
variation with constant 4ℓ∞/n, yielding that for all δ ∈ (0, 1)

PD

(
sup
f∈G
R(f)− R̂(f) + sup

f∈G
R̂(f)−R(f) ≤

E
(

sup
f∈G
R(f)− R̂(f) + sup

f∈F
R̂(f)−R(f)

)
+ ℓ∞2

√
2√

n

√
log 1

δ

)
≥ 1− δ.

We recall that

R(fD)−R(f∗) ≤ sup
f∈G
R(f)− R̂(f) + sup

f∈G
R̂(f)−R(f)

and from the proof of Lemma 20

E
(

sup
f∈G

(
R(f)− R̂(f)

)
+ sup

f∈G

(
R̂(f)−R(f)

))

≤ 4GD√
n

√
π

2

√√√√1 +
∑

α∈(Nd)∗

c|α|
|α|

EX

(
Hα(X)2),

yielding the final result.

A.4 Proof of Lemma 21

Proof of Lemma 21. The result for centred normal data with identity covariance matrix
is by the construction of the Hermite polynomials [Hermite, 2009].

If ∥X∥2 is bounded by R, using the bound from Equation (3.3), we get that

EX(Hα(X)2) ≤ E(e∥X∥2/2) ≤ EX

(
eR2/2) ≤ e

R2
2 .

If X is such that ∥X∥ is subgaussian with variance proxy σ2, we know that ∀λ ≤
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1/(6
√

2eσ), then EX(e∥X∥2λ2) ≤ e72eλ2σ2 [Vershynin, 2018, Proposition 2.5.2]. Therefore,
using the bound from Equation (3.3), we have

EX(Hα(X)2) ≤ E(e∥X∥2/2) ≤ e36eσ2 ≤ e

This concludes the study of EX

(
Hα(X)2).

A.5 Proof of Lemma 22

Proof of Lemma 22. Using d-dimensional geometric random variables, we know that

∑
α∈Nd

(1− ρ)dρ|α| = 1, and therefore
∑

α∈(Nd)∗

ρ|α|

|α|
≤ 1

(1− ρ)d
.

For the other setting,

∑
α∈(Nd)∗,|α|≤M

1
|α|

=
M∑

k=1

1
k

(
d− 1 + k

d− 1

)
≤ M + 1

d

(
M + d

M + 1

)
,

which concludes the proof.

A.6 Proof of Corollary 1

Proof of Corollary 1. First, we note from Lemma 21 that for any α ∈ Nd, we have
EX

(
Hα(X)2) ≤ eR2/2. Additionally, from Lemma 22, we know that∑α∈(Nd)∗

c|α|
|α| ≤

1
(1−ρ)d .

Next, we aim to improve the use of McDiarmid’s inequality by bounding the deviation
of supf∈F ,Ω(f)≤DR(f) − R̂(f) + supf∈F ,Ω(f)≤D R̂(f) − R(f) when a single data point
(x(i), y(i)) is changed to (x̃(i), ỹ(i)) changing the dataset from D to D̃. In the original proof
of Theorem 6, we used 4l∞/n as our bound, but we can provide a tighter bound. We write
R̂D(f) to specify the dependency on the dataset. We also write G := {f ∈ F , Ω(f) ≤ D}.
Specifically, we have

sup
f∈G
R(f)− R̂D(f)− sup

f∈G
R(f)− R̂D̃(f)

= sup
f∈G
R(f)− R̂D̃(f) + 1

n
ℓ(ỹ(i), f(x̃(i)))− 1

n
ℓ(y(i), f(x(i)))− sup

f∈G
R(f)− R̂D̃(f)

≤ sup
f∈G

1
n

ℓ(ỹ(i), f(x̃(i)))− 1
n

ℓ(y(i), f(x(i))),

and similarly

sup
f∈G
R̂D(f)−R(f)− sup

f∈G
R̂D̃(f)−R(f) ≤ sup

f∈G

1
n

ℓ(y(i), f(x(i)))− 1
n

ℓ(ỹ(i), f(x̃(i)).
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Combining both and taking the argmax functions f1 and f2, we obtain

sup
f∈G
R(f)− R̂D(f)− sup

f∈G
R(f)− R̂D̃(f) + sup

f∈G
R̂D(f)−R(f)− sup

f∈G
R̂D̃(f)−R(f)

≤ 1
n

ℓ(ỹ(i), f1(x̃(i))− 1
n

ℓ(y(i), f1(x(i))) + 1
n

ℓ(y(i), f2(x(i)))− 1
n

ℓ(ỹ(i), f2(x̃(i))

≤ G

n
(|(f1 − f2)(x(i)|+ |(f1 − f2)(x̃(i))|)

≤ 4
n

G sup
f∈F ,Ω(f)≤D,x∈Rd,∥x∥2≤R

|f(x)|

≤ 4
n

GD sup
x∈Rd,∥x∥2≤R

Ω∗((Hα(x))α)

≤ 4
n

GD sup
x∈Rd,∥x∥2≤R

√√√√1 +
∑

α∈(Nd)∗

c|α|
|α|

Hα(x)2

≤ 4
n

GD

√
1 + eR2/2

(1− ρ)d
.

We can obtain the same exact bound for the opposite quantity of

sup
f∈G
R(f)− R̂D(f)− sup

f∈G
R(f)− R̂D̃(f) + sup

f∈G
R̂D(f)−R(f)− sup

f∈G
R̂D̃(f)−R(f)

by using the same arguments. We use this bound for D = 2Ω(f∗). The result follows by
employing the proof of Theorem 6.

B Technical Details of the Numerical Experiments
Experiment 1. For MAVE and RegFeaL, the MARS final training used the default
parameters provided by the py-earth python package (https://contrib.scikit-learn.
org/py-earth/), except for the maximum degree, which was taken as the estimated dimen-
sion for both methods. MAVE was run using the provided CRAN package in R (https:
//cran.r-project.org/web/packages/MAVE/index.html) and the default parameters.

The number of iterations niter was set to 5. For RegFeaL, the cross-validation
for ρ × µ was done over the grid defined by (0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8) for ρ and
(1000, 100, 10, 1, 0.1, 0.01, 0.001)/d((2−r)/r) for µ.

The cross-validation for Kernel Ridge was done on parameter λ, with the set of val-
ues (1000, 100, 10, 1, 0.1, 0.01, 0.001)/d((2−r)/r). The score of the noise level was estimated
by 1− nσ2∑n

i=1(y(i)
test−ȳtest)2

.

Experiment 2. For each value of n, we used cross-validation for the largest value of m
and then used the selected ρ and λ for all other values of m. The cross-validation was done
over the grid defined by (0.2, 0.4, 0.6, 0.8, 1.0) for ρ and (100, 1, 0.1, 0.01, 0.001)/d((2−r)/r)

for µ. The number of iterations niter was 3.

Experiment 3. The cross-validation for ρ × µ was done over the grid defined by the
sequences (0.2, 0.4, 0.6, 0.8, 1.0), for ρ and (100, 1, 0.1, 0.01, 0.001)/d((2−r)/r), for µ.
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CHAPTER 4

Integrating Neural Networks and Kernel Methods

The contents of this chapter are available in the preprint (under review by the Jour-
nal of Machine Learning Research) B. Follain and F. Bach. Enhanced Feature Learn-
ing via Regularisation: Integrating Neural Networks and Kernel Methods, 2024. URL
https://arxiv.org/abs/2407.17280 while the code is available at https://github.
com/BertilleFollain/BKerNN.

We propose a new method for feature learning and function estimation in su-
pervised learning via regularised empirical risk minimisation. Our approach
considers functions as expectations of Sobolev functions over all possible one-
dimensional projections of the data. This framework is similar to kernel
ridge regression, where the kernel is Ew(k(B)(w⊤x, w⊤x′)), with k(B)(a, b) :=
min(|a|, |b|)1ab>0 the Brownian kernel, and the distribution of the projections
w is learnt. This can also be viewed as an infinite-width one-hidden layer neu-
ral network, optimising the first layer’s weights through gradient descent and
explicitly adjusting the non-linearity and weights of the second layer. We in-
troduce an efficient computation method for the estimator, called Brownian
kernel neural network (BKerNN), using particles to approximate the
expectation. The optimisation is principled due to the positive homogeneity of
the Brownian kernel. Using Rademacher complexity, we show that BKerNN’s
expected risk converges to the minimal risk with explicit high-probability rates
of O(min((d/n)1/2, n−1/6)) (up to logarithmic factors). Numerical experiments
confirm our optimisation intuitions, and BKerNN outperforms kernel ridge
regression, and favourably compares to a one-hidden layer neural network with
ReLU activations in various settings and real data sets.
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1. Introduction

1 Introduction
In the era of high-dimensional data, effective feature selection methods are crucial. Repre-
sentation learning aims to automate this process, extracting meaningful information from
complex data sets. Non-parametric methods often struggle in high-dimensional settings,
making the multi-index model, which assumes a few relevant linear features explain the
relationship between response and factors, an attractive alternative. Formally, the multi-
ple index model [Xia, 2008] is expressed as Y = f∗(X)+noise = g∗(P ⊤X)+noise, with Y
the response, X the d-dimensional covariates, g∗ the unknown link function, P ∈ Rd×k the
features and k ≤ d, the number of such relevant linear features1. The components P ⊤X
are linear features of the data that need to be learnt, reducing the dimensionality of the
problem, which may allow to escape the curse of dimensionality, while the more general
function g increases the capacity of the model.

Multiple index models have been extensively studied, leading to various methods for
estimating the feature space. Brillinger [2012] introduced the method of moments for
Gaussian data and one feature, by using specific moments to eliminate the unknown
function. For features of any dimension, several methods have been proposed. Sliced
inverse regression (SIR) [Li, 1991] uses second-order moments to identify effective di-
mensions by slicing the response variable and finding linear combinations of predictors,
while improvements have been proposed [Yang et al., 2017], these methods heavily rely on
assumptions about the covariate distribution shape and prior knowledge of the distribu-
tion. Iterative improvements have been an interesting line of work [Dalalyan et al., 2008],
while optimisation-based methods like local averaging minimise an objective function to
estimate the subspace [Fukumizu et al., 2009, Xia et al., 2002]. Despite their practical
performance, particularly the MAVE method [Xia et al., 2002], the theoretical guarantees
show exponential dependence on the original data dimension, making them less suitable
for high-dimensional settings.

In this work, we tackle feature learning and function estimation jointly through the
paradigm of empirical risk minimisation. We consider a classical supervised learning prob-
lem. We have i.i.d. samples (xi, yi)i∈[n] from a random variable (X, Y ) ∈ X ×Y ⊂ Rd×R.
Our goal is to minimise the expected risk, which is defined as R(f) := EX,Y [ℓ(Y, f(X))]
over some class of functions F , where ℓ is a loss function mapping from R×R to R. This
can be achieved through the framework of regularised empirical risk minimisation, where
the empirical risk is defined as R̂(f) := 1

n

∑n
i=1 ℓ(yi, f(xi)). Our interest in regularised

empirical risk minimisation stems from its flexibility, allowing it to be applied to a wide
range of problems as long as the objective can be defined as the optimisation of an ex-
pected loss. Our primary objective is to achieve the lowest possible risk, which we study in
theory and in practice, while we explore the recovery of underlying features in numerical
experiments. Our method draws inspiration from several lines of work, namely positive
definite kernels and neural networks with their mean field limit, which we briefly review,
together with the main limitations we aim to alleviate.

Kernel methods and multiple kernel learning. A well-known method in supervised
learning is kernel ridge regression [KRR, Vovk, 2013], which implicitly maps data into
high-dimensional feature spaces using kernels. It benefits from dimension-independent
rates of convergence if the model is well-specified, i.e., if the target function belongs to
the related Hilbert space. However, KRR does not benefit from the existence of linear
features in terms of convergence rates of the risk when the model is misspecified [Bach,

1Note that in all other chapters, this was called s.
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2024, Section 9.3.5], as it relies on pre-specified features. To address the limitations
of single-kernel methods, multiple kernel learning (MKL) optimally combines multiple
kernels to capture different data aspects [Bach et al., 2004, Gönen and Alpaydın, 2011].
However, MKL suffers from significant computational complexity and the critical choice
of base kernels, which can introduce biases if not selected properly. Furthermore, MKL
does not resolve the issue of leveraging hidden linear features effectively.

Neural networks. Now consider another type of supervised learning methods, namely
neural networks with an input layer of size d, a hidden layer with m neurons, an activation
function σ, followed by an output layer of size 1. Functions which can be represented are
of the form f(x) = ∑m

j=1 ηjσ(w⊤
j x+bj), where σ can be the ReLU, σ(z) = max(0, z) or the

step function σ(z) = 1z>0. Neural networks benefit from hidden linear features, achieving
favourable rates dependent on k, the number of relevant features, rather than on the data
dimension [Bach, 2024, Section 9.3.5]. However, this formulation requires multiple b values
to fit a function with the same w, particularly in single-index models f∗(x) = g∗(w⊤x),
which is inefficient.

Regularising by adding a penalty term to the empirical risk minimisation objective
guides specific estimator behaviours. In the context of feature learning, Rosasco et al.
[2013] used derivatives for regularisation in nonparametric models, focusing on variable
selection. While their method reduces to classical regularisation techniques for linear func-
tions, it faces limitations: functions depending on a single variable do not belong in the
chosen RKHS, using derivatives at data points limits the exploitation of regularity, and
there is no benefit from hidden variables in the misspecified case. An improvement over
this method was studied for both feature learning and variable selection by Follain and
Bach [2024b], where a trace norm penalty [Koltchinskii et al., 2011, Giraud, 2014] on the
derivatives was used for the feature learning case. However, the dependency on the dimen-
sion of the rate did not allow high-dimensional learning. We can justify the use of trace
norm penalties by considering the structure of neural networks. Under the multiple-index
model, the weights w1, . . . , wm of the first layer are expected to lie in a low-rank subspace
of rank at most k. However, directly enforcing a rank constraint is not practical for optimi-
sation. Therefore, we could use a relaxation such as Ω(f) = tr

((∑m
j=1 wjw⊤

j

)1/2), which
is the trace norm of a matrix containing the weights, to approximate the rank constraint
effectively. However, there is still the issue of multiple constant terms for a single weight.
We will see specialised penalties for feature learning for a different family of functions.

Mean-field limit. To apply a similar framework to our future estimator, we introduce
the mean-field limit of an over-parameterised one-hidden layer neural network [Nitanda
and Suzuki, 2017, Mei et al., 2019, Chizat and Bach, 2022, Sirignano and Spiliopoulos,
2020]. When the number of neurons m is very large, the network can be rescaled as follows

f(x) = 1
m

m∑
j=1

ηjσ(w⊤
j x + bj), which approximates

∫
ησ(w⊤x + b) dµ(η, w, b), (4.1)

where µ is a probability distribution, and we can take the weights and constant terms
(w, b) to be constrained when the activation is 1-homogeneous,2 such as the ReLU or
step function. This approach is valuable because, as noted by Chizat and Bach [2022],
under certain conditions (convexity of the loss and penalty functions, homogeneity of the
activation function), the regularised empirical risk problem optimised via gradient descent

2A function Φ is positively 1-homogeneous if, for any κ > 0, Φ(κw) = κΦ(w).
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in the infinitely small step-size limit converges to the minimiser of the corresponding
problem with infinitely many particles. This allows us to use a finite number of particles
m in practice while still leveraging the theoretical benefits derived from the continuous
framework.

Plan of the chapter and notations. In this chapter, we introduce the Brownian kernel
neural network (BKerNN), a novel model for feature learning and function estimation.
Our approach combines kernel methods and neural networks using regularised empiri-
cal risk minimisation. Section 2 presents the theoretical foundations and formulation of
BKerNN. Section 3 details the practical implementation, including the optimisation algo-
rithm and convergence insights. Section 4 provides a statistical analysis using Rademacher
complexity to show high-probability convergence to the minimal risk with explicit rates.
Section 5 evaluates BKerNN through experiments on simulated and real data sets, com-
paring it with neural networks and kernel methods. Finally, Section 6 summarises the
findings and suggests future research directions.

We use the following notations. For a positive integer m, we define [m] := {1, . . . , m}.
For a d-dimensional vector α and i ∈ [d], αi denotes its i-th element. For a matrix A,
tr A denotes its trace when A is square, A−1 its inverse when well defined, while Ai,j the
element in its i-th row and j-th column, and A⊤ its transpose. Id is the d × d identity
matrix. We use Sd−1 to denote the unit sphere in Rd for ∥ · ∥ a generic norm and ∥ · ∥∗ its
dual norm. The ℓ2, ℓ1, and ℓ∞ norms are denoted as ∥·∥2, ∥·∥1, and ∥·∥∞ respectively. We
use O(·) to denote the asymptotic behaviour of functions, indicating the order of growth.
The set of probability measures on a given space S is denoted by P(S). A normal random
variable is denoted as following the law N (mean, variance). 1 is the indicator function.
For two spaces S1, S2, SS2

1 is the set of functions from S2 to S1.

2 Neural Networks and Kernel Methods Fusion
Building on the limitations of current methods discussed in the introduction, we propose
a novel architecture that integrates neural networks with kernel methods. This approach
can be interpreted in two ways: as learning with a kernel that is itself learned during
training, or as employing a one-hidden layer neural network where the weights from the
input layer to the hidden layer are learned through gradient descent, while the weights and
non-linearity from the hidden layer to the output are optimised explicitly. In this section,
we introduce the custom function space we propose, revisit key properties of reproducing
kernel Hilbert spaces (RKHS), and explore the connections between BKerNN model,
kernel methods, and neural networks. Additionally, we present the various regularisation
penalties we consider throughout our analysis.

2.1 Custom Space of Functions

We begin by considering the continuous setting, which mirrors the mean-field limit of
over-parameterised one-hidden layer neural networks discussed in Section 1.
Definition 4 (Infinite-Width Function Space). Let

F∞ :=
{

f | f(·) = c +
∫

Sd−1
gw(w⊤·) dµ(w), Ω0(f) <∞

}
,

where c is a constant in R, Sd−1 is the unit sphere for some norm ∥ · ∥ on Rd (typically
either ℓ2 or ℓ1), µ ∈ P(Sd−1) is a probability measure on Sd−1, and ∀w ∈ Sd−1, gw : R→ R
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belongs to a space of functions H. We define H as {g : R → R | g(0) = 0, g has a weak
derivative g′,

∫
R(g′)2 < ∞}. H is a Hilbert space and a Sobolev space, with the inner

product defined as ⟨g̃, g⟩H =
∫

g̃′g′. Note that gw vary for each w and that

Ω0(f) := inf
c∈R,(gw)w∈HSd−1 ,µ∈P(Sd−1)

∫
Sd−1
∥gw∥H dµ(w), (4.2)

such that f = c +
∫

Sd−1 gw(w⊤·) dµ(w), where ∥gw∥2H :=
∫+∞

−∞ (g′
w)2.

F∞ is well-defined using a “variation norm” on couples (g, w) integrated w.r.t a Borel
measure on H × Sd−1. The details of the equivalence with the version presented above
are available in Appendix A.1. It follows from similar arguments to those of Kurkova and
Sanguineti [2001] and Bach [2024, Section 9.3.2].

The function space F∞ is inspired by infinite-width single hidden layer neural net-
works: with the addition of the intercept c, each function in this space can be seen as the
integral of a linear part w and a non-linearity gw over some probability distribution, as
in Equation (4.1) where the non-linearity is ησ(·). Thus here the activation functions are
learnt.

The approximation of F∞ with m particles can then be obtained as follows.

Definition 5 (Finite-Width Function Space). Let

Fm :=

f | f(·) = c + 1
m

m∑
j=1

gj(w⊤
j ·), wj ∈ Sd−1, gj ∈ H, c ∈ R

 .

Remark that ∀m ∈ N∗,Fm ⊂ F∞, by taking the discrete probability measure uniformly
supported by the particles w1, . . . , wm.

We now consider regularised empirical risk minimisation starting with the basic penalty
Ω0. This penalty enforces the regularity of the function and, because we use penalisation
with non-squared norms, limits the number of non-zero gw. While this penalty is not
specifically aimed at feature learning, by limiting the number of non-zero particles, it
indirectly promotes feature learning to some extent. This serves as a starting point, and we
introduce more targeted penalties in Section 2.5 with a stronger feature learning behaviour.
For f ∈ Fm written as in Definition 5, the penalty simplifies to Ω0(f) = 1

m

∑m
j=1 ∥gj∥H.

The learning objective is thus defined as

f̂λ := arg min
f∈F

R̂(f) + λΩ(f), (4.3)

where λ > 0 is a regularisation parameter and Ω is currently Ω0 from Equation (4.2). The
function space F is either F∞ or Fm. For statistical analysis in Section 4, we consider
F∞, while in practice, we compute the estimator using Fm as discussed in Section 3. The
rationale for using Fm and expecting the statistical properties of F∞ is elaborated in
Section 3.2.

In the continuous setting, Equation (4.3) corresponds to

min
c∈R,(gw)w∈HSd−1 ,µ∈P(Sd−1)

1
n

n∑
i=1

ℓ

(
yi, c +

∫
Sd−1

gw(w⊤xi)dµ(w)
)

+ λ

∫
Sd−1
∥gw∥Hdµ(w),

(4.4)
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while in the m-particles setting, Equation (4.3) becomes

min
c∈R,w1,...,wm∈Sd−1,g1,...,gm∈H

1
n

n∑
i=1

ℓ

(
yi, c + 1

m

m∑
j=1

gj(w⊤
j xi)

)
+ λ

1
m

m∑
j=1
∥gj∥H. (4.5)

2.2 Properties of Reproducing Kernel Hilbert Space H and Kernel k

In this subsection, we succinctly present some properties of reproducing kernel Hilbert
spaces (RKHS) that are essential for our analysis. See Aronszajn [1950], Berlinet and
Thomas-Agnan [2011] for an introduction to RKHS. Recall that we defined the Hilbert
space H as

H :=
{

g : R→ R | g(0) = 0,

∫
R

(g′)2 < +∞
}

,

with the inner product ⟨g̃, g⟩ =
∫
R g̃′g′. This space is a reproducing kernel Hilbert space

with the reproducing kernel k(B)(a, b) = (|a| + |b| − |a − b|)/2 = min(|a|, |b|)1ab>0. This
kernel, which can be referred to as the “Brownian” kernel, corresponds to the covariance
of the Brownian motion at times a and b [Mishura and Shevchenko, 2017, Chapter 3].
Consequently, we have the reproducing property

∀g ∈ H, ∀a ∈ R, g(a) = ⟨g, k(B)
a ⟩,

where k
(B)
a : b ∈ R → k(B)(a, b) ∈ R. As a reproducing kernel, it is positive definite,

meaning that for any n ∈ N, α ∈ Rn, and a ∈ Rn, we have ∑n
i,j=1 αik

(B)(ai, aj)αj ≥ 0.
Additionally, we observe that ∥k(B)

a ∥2H = |a| and ∥k(B)
a − k

(B)
b ∥2H = |a − b|. It is also

noteworthy that by definition, the functions in H are necessarily continuous, in fact even
1/2-Hölder continuous as we see in Lemma 24.

The usual Hilbert/Sobolev space is W 1,2(R) (also written as H1) with inner product
equal to ⟨f, g⟩ =

∫
fg +

∫
f ′g′. This space is also an RKHS for the reproducing kernel

kexp(a, b) = exp(−|a−b|) [see, e.g., Williams and Rasmussen, 2006]. We demonstrate that
for optimisation purposes, the Brownian kernel is more advantageous due to its positive
homogeneity in Section 3.2.

2.3 Characterisation of F∞

In this subsection, we discuss the properties of the function space F∞ and its relationship
to other relevant spaces, such as the space of functions of one-hidden-layer neural networks
presented in Section 1. We first present the following lemma.

Lemma 24 (Properties of Functions in F∞). F∞ is a vector space and max(f(0), Ω0(f))
is a norm on F∞. For f ∈ F∞, the function f is 1/2-Hölder continuous with constant
Ω0(f), i.e., |f(x)− f(x′)| ≤ Ω0(f)

√
∥x− x′∥∗.

The proof can be found in Appendix A.2.1. This lemma indicates that the space of
functions F∞ is contained within the space of 1/2-Hölder continuous functions. Recall
that on a compact, all Lipschitz functions are Hölder continuous functions, indicating
that the Hölder condition is less restrictive.

Now, we consider the relationship of F∞ to other function spaces. Starting with
the one-dimensional case, BKerNN reduces to kernel ridge regression with the Brownian
kernel, which is also equivalent to learning with natural cubic splines [for an introduction to
splines, see Wahba, 1990]. For multi-dimensional data, we use the Fourier decomposition of
functions to bound the defining norms of function spaces, enabling us to make comparisons.
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Lemma 25 (Functions Spaces Included in F∞). Assume we only consider functions f
with support on the ball centred at 0 with radius R and norm ∥ · ∥∗. Assume f has a
Fourier transform and can be written using the inverse transform3 as

f(x) = 1
(2π)d

∫
Rd

f̂(ω)eiω⊤x dω,

then, it follows that

Ω0(f) ≤
√

2R

(2π)d

∫
Rd
|f̂(ω)| · ∥ω∥ dω.

Hence, if
∫
Rd |f̂(ω)| · ∥ω∥ dω <∞, then f belongs to F∞.

The proof is given in Appendix A.2.2. We remark that the condition
∫
Rd |f̂(ω)| ·

∥ω∥dω <∞ is a form of constraint on the regularity of the first-order derivatives.
According to Bach [2024, Section 9.3.4], the space of one-hidden-layer neural networks

with ReLU activations in the mean-field limit with ∥w∥2 = 1, |b| ≤ R can be equipped with
the Banach norm γ1(f) =

∫
|η|dµ(η, w, b), which can be then bounded as in Lemma 25 by

2
(2π)dR

∫
Rd
|f̂(ω)|(1 + 2R2∥ω∥22) dω. (4.6)

Now remark that the bound on Ω0 contains a factor ∥w∥ in the integral, whereas for ReLU
neural networks with γ1 norm it is 1 + 2R2∥w∥22. Hence, the constraint is stronger on the
neural network space, no matter what norm ∥ · ∥ corresponds to, suggesting that F∞ is a
larger space of functions.

Also note that the bound from Equation (4.6) can be shown to be smaller (up to a
constant) than the norm defining the Sobolev space penalising derivatives up to order
s := d/2 + 5/2, which is

∫
Rd |f̂(ω)|2(1 + 2R2∥ω∥22)s dω. [Bach, 2024, Section 9.3.5]. This

space is an RKHS because s > d/2, and the inequality on norms yields that the space of
neural networks with ReLU activations equipped with the norm γ1 (which is a Banach
space) contains this RKHS. Another interesting remark is that if we used the norm γ2(f) =∫

η2dµ(η, w, b) instead of γ1, the space that we would obtain is an RKHS and is strictly
included in the one defined by γ1 [Bach, 2024, Section 9.5.1]

For neural networks with step activations, i.e., σ(z) = 1z>0 in the mean-field limit, a
similar bound holds for the γ1 norm

1
(2π)d

∫
Rd
|f̂(ω)|(1 + R∥ω∥2) dω. (4.7)

This can be seen by applying the same proof technique as for Equation (4.6) from Bach
[2024, Section 9.3.4]4. Learning with this space is not practically feasible due to optimisa-
tion issues as the step function is incompatible with gradient descent methods. However,
the bound from Equation (4.7) is similar to the one on Ω0, hinting that F∞ is comparably
large even though learning is possible with F∞, as discussed in Section 3. For a discussion
on this topic, see Bach [2024, Chapter 9] and Liu et al. [2024].

3A sufficient condition is that both f and f̂ belong to L1(Rd).
4The only difference being that we use eiu∥w∥2 = 1+

∫ R

0 i∥w∥2eit∥w∥21t≤udt instead of Taylor’s formula,
yielding γ1(x → eiω⊤x) ≤ 1 + R∥w∥2.
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2.4 Learning the Kernel or Training a Neural Network?

We first transform the optimisation problem before considering our setup from two differ-
ent perspectives: one through kernel learning and the other through neural networks. To
transform the optimisation problem, we use the representer theorem, a well-known result
in RKHS that allows us to replace the optimisation over functions in the RKHS with
optimisation over a finite weighted sum of the kernel at the data points.

Lemma 26 (Kernel Formulation of Finite-Width). Equation (4.5) is equivalent to

min
w1,...,wm∈Rd,c∈R,α∈Rn

1
n

n∑
i=1

ℓ(yi, (Kα)i + c) + λ

2 α⊤Kα + λ

2
1
m

m∑
j=1
∥wj∥, (4.8)

where K = 1
m

∑m
j=1 K(wj), and K(wj) ∈ Rn×n is the kernel matrix for kernel k(B) and

projected data (w⊤
j x1, . . . , w⊤

j xn), i.e., K
(wj)
i,i′ = (|w⊤

j xi| + |w⊤
j xi′ | − |w⊤

j (xi − xi′)|)/2.
Notice that there are no constraints on the particles (wj)j∈[m] to belong to the unit sphere
anymore.

The proof is provided in Appendix A.3.1. This lemma shows that we only need to
solve a problem over finite-dimensional quantities. For computational complexity consid-
erations, see Section 3.1. We can view Equation (4.8) using kernels. In a classical kernel
supervised learning problem with an unregularised intercept, we would have a fixed kernel
matrix K and consider

min
c∈R,α∈Rn

1
n

n∑
i=1

ℓ(yi, (Kα)i + c) + λ

2 α⊤Kα.

For infinitely many particles, the analogue of Lemma 26 is Lemma 27.

Lemma 27 (Kernel Formulation of Infinite-Width). Equation (4.4) is equivalent to:

min
ν∈P(Rd),c∈R,α∈Rn

1
n

n∑
i=1

ℓ(yi, (Kα)i + c) + λ

2 α⊤Kα + λ

2

∫
Rd
∥w∥ dν(w), (4.9)

with K =
∫
Rd K(w) dν(w) and and K(w) ∈ Rn×n is the kernel matrix for kernel k(B) and

data (w⊤x1, . . . , w⊤xn). At the optimum, the support of µ from Equation (4.4) can be
obtained from that of ν from Equation (4.9) by normalising all vectors.

Notice that there is shift in spaces, as ν is a probability distribution on Rd, whereas µ
was a probability distribution on Sd−1. The proof is provided in Appendix A.3.2.

2.4.1 Kernel Perspective

Lemma 26 shows that we are solving a regularised kernel ridge regression problem where
the kernel 1

m

∑m
j=1(|w⊤

j x| + |w⊤
j x′| − |w⊤

j (x − x′)|)/2 is also learnt through the weights
(wj)j∈[m], and the third term λ

2
1
m

∑m
j=1 ∥wj∥ serves as a penalty to improve kernel learning.

The homogeneity of the kernel k(B) leads to well-behaved optimisation, as we discuss
in Section 3.2 and see in Experiment 1 in Section 5.2. The kernel matrix K is indeed
positively 1-homogeneous in the particles (wj)j∈[m]. If we had chosen H to be the RKHS
corresponding to the exponential kernel (or the Gaussian kernel), we would have faced
the challenge of learning the kernel ∑m

j=1 e−|w⊤
j (x−x′)|, which exhibits a complex and non-

homogeneous dependency on the weights (wj)j∈[m]. By using the Brownian kernel instead
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of the exponential kernel, we only slightly change the regularisation, regularising with∫
R(g′)2 instead of

∫
R g2 +

∫
R(g′)2 while making the optimisation more tractable.

Compared to multiple kernel learning, BKerNN offers notable advantages. MKL
involves combining several predefined kernels, which is prone to overfitting as the number
of kernels increases. Additionally, selecting the optimal kernel combination is challenging
and often requires sophisticated algorithms. In contrast, BKerNN adapts the kernel
through the learned weights (wj)j∈[m], making the optimisation process simpler and more
efficient, as discussed in Section 3.

2.4.2 Neural Network Perspective

Our architecture can also be interpreted as a special type of neural network with one hidden
layer. Recall that F∞ is inspired by neural networks as it involves linear components w
followed by a non-linear part. In neural networks, this non-linear part is typically ησ(·),
which we replaced with gw(·) ∈ H in our setting. The functions in Fm are expressed
similarly with the number of particles m equivalent to the number of neurons in the
hidden layer.

As we discuss in Section 3.1, we learn the weights (wj)j∈[m] through gradient descent,
while the functions (gj)j∈[m] are learned explicitly, leveraging a closed-form solution. This
approach resonates with the work of Marion and Berthier [2023] and Bietti et al. [2023].
Marion and Berthier [2023] examine a one-hidden layer neural network where the step-sizes
for the inner layer are much smaller than those for the outer layer. They prove that the
gradient flow converges to the optimum of the non-convex optimisation problem in a simple
univariate setting and that the number of neurons does not need to be asymptotically large,
which is a stronger result than the usual study of mean-field regimes or neural tangent
kernel. Bietti et al. [2023] consider learning the link function in a non-parametric way
infinitely faster than the low-rank projection subspace, which resonates with our method,
although they focus Gaussian data.

We have also established that the function space F∞ is more extensive than the space
of neural networks with ReLU activations in Section 2.3. In Section 3.2, we demonstrate
that this enlargement is compatible with efficient optimisation.

2.5 Other Penalties

We now present other penalties designed to achieve different effects. The three terms in
Equation (4.8) correspond to the empirical risk, the standard penalty from KRR on the
RKHS norm of the function, and an extra regularisation term on the learnt kernel weights.
This additional term, λ

2m

∑m
j=1 ∥wj∥, originates from the penalty Ω0(f) in Equation (4.2).

However, we can explore other penalties on w1, . . . , wm that induce various additional
sparsity effects, even if they do not directly correspond to penalties on f ∈ Fm. Let
W ∈ Rd×m be the matrix with (w1, . . . , wm) as columns, denote by W (a) the a-th row of
W , and let W = USV ⊤ be its singular value decomposition, with S a diagonal matrix
composed of S1, . . . , Smin(m,d). Recall that ν is a probability distribution on Rd.

1. Basic penalty: Ωbasic(w1, . . . , wm) = 1
2m

∑m
j=1 ∥wj∥, which we discussed in Sec-

tion 2.1. In the continuous setting, it corresponds to 1
2
∫
Rd ∥w∥dν(w). This penalty,

which does not target any specific pattern in the data-generating mechanism, is the
one for which we provide theoretical results in Section 4. However, it does not work
as well in practive as the following penalties.
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2. Variable penalty: Ωvariable(w1, . . . , wm) = 1
2
∑d

a=1
( 1

m

∑m
j=1(wj)2

a

)1/2, which is also
equal to 1

2
√

m

∑min(m,d)
a=1 ∥W (a)∥2. This penalty, inspired by the group Lasso [Yuan

and Lin, 2006], is designed for variable selection, pushing quantities ∥W (a)∥2 towards
zero, thus encouraging dependence on a few variables. In the continuous setting, it
corresponds to 1

2
∑min(m,d)

a=1
( ∫

Rd |wa|2dν(w)
)1/2.

3. Feature penalty: Ωfeature(w1, . . . , wm) = 1
2 tr

(( 1
m

∑m
j=1 wjw⊤

j

)1/2), which is also
equal to 1

2
∑min(m,d)

a=1
Sa√

m
and to the nuclear norm of W divided by 2

√
m. It is

used for feature learning as it is a convex relaxation of the rank, encouraging W
to have low rank and thus dependence on only a few linear transformations of the
data. Regularisation using the nuclear norm in the context of feature learning is
well-established in the literature, as demonstrated by Argyriou et al. [2008]. It
corresponds to 1

2 tr
(( ∫

Rd ww⊤dν(w)
)1/2) in the continuous setting.

4. Concave variable penalty: The concave version of the penalty for variable se-
lection, Ωconcave variable(w1, . . . , wm) = 1

2s

∑d
a=1 log

(
1 + s√

m
∥W (a)∥2

)
, with s ≥ 0.

The appeal of the added concavity is discussed below. In the continuous setting, it
corresponds to 1

2s

∑d
a=1 log

(
1 + s

∫
Rd(wa)2dν(w)

)1/2).
5. Concave feature penalty: The concave version of the penalty intended for fea-

ture learning, Ωconcave feature(w1, . . . , wm) = 1
2s

∑min(m,d)
a=1 log

(
1 + s√

m
Sa
)

for feature
selection, with s ≥ 0. The appeal of the added concavity is discussed below. In the
continuous setting it corresponds to 1

2s

∑d
a=1 log

(
1 + s

(( ∫
Rd ww⊤dν(w)

)1/2)
a,a

)
.

The first penalty is convex in both ν and W , making it straightforward to optimise.
The second and third penalties, while not convex in ν, are convex in W due to the
presence of squared and square root terms on the components of W , easing optimisation
in the m particles setting. The fourth and fifth penalties are neither convex in ν nor
W , instead, they are concave in W . As s approaches zero, these penalties revert to
their non-concave versions. Convex penalties, while easier to handle, can be detrimental
by diminishing relevant variables or features to achieve sparsity. Mitigating this effect
can involve retraining with the selected variables/features or employing concave penalties,
which is the choice we made here. Although concave penalties are more complex to analyse,
they often yield better performance because they drive the solution towards the boundary,
promoting sparsity [Fan and Li, 2001, Bach et al., 2012]. We discuss the impact of the
choice of regularisation in Experiment 3 in Section 5.3.

3 Computing the Estimator
In this section, we detail the process of computing the estimator for each of the penalties
presented in Section 2.5. We then discuss the importance of the homogeneity of the
Brownian kernel and how the optimisation with particles relates to the continuous setting.

3.1 Optimisation Procedure

In this section, we focus on the square loss ℓ(y, y′) = 1
2(y − y′)2, which allows for ex-

plicit computations. However, the method can be extended to other loss functions using
gradient-based techniques, [see Bach, 2024, Chapter 5]. Recalling Equation (4.8) and the
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penalties described in Section 2.5, the optimisation problem we aim to solve is

min
w1,...,wm∈Rd,c∈R,α∈Rn

1
2n
∥Y −Kα− c1n∥22 + λ

2 α⊤Kα + λΩweights(w1, . . . , wm), (4.10)

where K = 1
m

∑m
j=1 K(wj) and Ωweights represents any of the penalties from Section 2.5.

To solve this problem, we alternate between minimisation with respect to α and c,
which is done in closed-form, and minimisation with respect to w1, . . . , wm which is done
using one step of proximal gradient descent.

3.1.1 Fixed Particles w1, . . . , wm

When the weights w1, . . . , wm are fixed, the kernel matrix K is also fixed, allowing us to
find the solution for the constant c and the coefficients α in closed-form. By centring both
the kernel matrix and the response Y , we transform the problem into a classical kernel
ridge regression problem, for which explicit solutions are well-known.

Lemma 28 (Optimisation for Fixed Particles). For fixed w1, . . . , wm and hence a fixed
K, define

G(w1, . . . , wm) := min
α∈Rn,c∈R

1
2n
∥Y −Kα− c1n∥22 + λ

2 α⊤Kα.

The optimisation problem defining G is solved by

α = (K̃ + nλI)−1Ỹ and c = 1⊤Y

n
− 1⊤Kα

n
,

where K̃ := ΠKΠ and Ỹ := Y − 11⊤Y
n , with Π = I − 11⊤

n being the centring matrix. The
objective value is then

G(w1, . . . , wm) = λ

2 Ỹ ⊤(K̃ + λnI)−1Ỹ .

The proof is provided in Appendix A.4.1. Lemma 28 allows us to optimise α and c
explicitly during the optimisation process. The complexity of this step is O(n3 + n2d),
which can be challenging when the sample size n is large, a common drawback of kernel
methods. However, techniques like the Nyström method [Drineas and Mahoney, 2005],
which approximates the kernel matrix, can help mitigate this issue. Alternatively, we
could use gradient descent techniques, but as shown in Marion and Berthier [2023], it may
be beneficial to learn the weights from the hidden layer to the output layer (corresponding
to learning g1, . . . , gm and hence α) with a much larger step-size than the weights from
the input layer to the hidden layer (corresponding to learning w1, . . . , wm). Learning α
and c explicitly represents the limit of this two-timescale regime.

3.1.2 Proximal Step to Optimise the Weights w1, . . . , wm

Next, we focus on optimising w1, . . . , wm while keeping c and α fixed. The goal is to solve

min
w1,...,wm∈Rd

G(w1, . . . , wm) + λΩweights(w1, . . . , wm), (4.11)

where the dependence on (wj)j∈[m] in the first term is through the kernel matrix K.
Note that G is convex in K but not in w1, . . . , wm. Additionally, G is differentiable
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almost everywhere, except where w⊤
j (xi − xi′) for some j ∈ [m], i ̸= i′ ∈ [n]. However,

standard practice assumes that these non-differentiabilities average out with many data
points. Meanwhile, the penalties Ωweights are not differentiable at certain fixed points,
independently of the data, similarly to the Lasso penalty. Therefore, we use proximal
gradient descent to solve Equation (4.11). With a step-size γ > 0, this involves minimising

m∑
j=1

∂G

∂wj
(wold)⊤(wj − wold

j ) + 1
2γ

m∑
j=1
∥wj − wold

j ∥22 + λΩweights(w1, . . . , wm),

over w1, . . . , wm ∈ Rd. This corresponds to the simultaneous proximal gradient descent
steps wj ← proxλγΩ(wj − γ ∂G

∂wj
). We therefore compute the gradient and the proximal

operator. For the gradient, we have the following lemma.

Lemma 29 (Gradient of G). Let j ∈ [m], then

∂G

∂wj
= λ

4
1
m

n∑
i,i′=1

zizi′ sign(w⊤
j (xi − xi′))(xi − xi′),

where z = (K̃ + nλI)−1Ỹ .

The proof is in Appendix A.4.2. Note that G is not differentiable around 0, which is
also the case of common activation functions in neural networks such as the ReLU, but
this is not an issue in practice.

Next, we compute the proximal operator for the described penalties. Recall the defi-
nition of the proximal operator

proxΩ(W ) = arg min
(u1,...,um)∈Rd×m

1
2

m∑
j=1
∥wj − uj∥22 + Ω(u1, . . . , um).

We use W ∈ Rd×m and (w1, . . . , wm) interchangeably, with W = USV ⊤ (SVD). We denote
the rows of W by W (a) as before. The following lemma provides the proximal operators.

Lemma 30 (Proximal Operators). We describe the proximal operators.

1. For Ωbasic(W ) = 1
2m

∑m
j=1 ∥wj∥, then

(
proxλγΩ(W )

)
j

=
(
1− λγ

2m
1

∥wj∥
)

+wj.

2. For Ωvariable(W ) = 1
2
√

m

∑d
a=1 ∥W (a)∥2, (proxλγΩ(W ))(a) =

(
1− λγ

2
√

m
1

∥W (a)∥2

)
+W (a).

3. For Ωfeature(W ) = 1
2trace

(( 1
m

∑m
j=1 wjw⊤

j

)1/2), then we have proxλγΩ(W ) = US̃V ⊤

with S̃ =
(
1− λγ

2
√

m|S|
)

+S.

4. For Ωconcave variable(W ) = 1
2s

∑d
a=1 log

(
1 + s√

m
∥W (a)∥2

)
, then with c obtained from

(∥W (a)∥2)a∈[d] by an explicit (albeit lengthy) formula (proxλγΩ(W ))(a) = cW (a).

5. For Ωconcave feature(W ) = 1
2s

∑d
a=1 log

(
1 + s√

m
Sa
)
, then with c which obtained from

S by an explicit (albeit lengthy) formula proxλγΩ(W ) = US̃V ⊤ with S̃ = cS.

The proof is in Appendix A.4.3. Each proximal step is easy to compute using the
explicit formulas above, with complexities O(md) for the basic, variable, and concave
variable cases, and O(md min(m, d)) for the feature and concave feature cases, due to the
SVD computation.
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3.1.3 Algorithm Pseudocode

We now have all the components necessary to provide the pseudocode of the proposed
method BKerNN, specifically for the square loss. For other losses, the main difference is
that α and c might not be solvable in closed-form and would need to be computed through
alternative methods such as gradient descent.

Data: X, Y, m, λ, γ, Ωweights
Result: w1, . . . , wm, c, α

W = (w1, . . . , wm) ∈ Rd×m ←
(
N (0, 1/d)

)d×m;
for i ∈ [niter] do

Compute K;
α← (K̃ + nλI)−1Ỹ , c← 1⊤Y

n − 1⊤

n Kα;
Compute ∂G

∂W ;
γ ← γ × 1.5;
while G(proxλγΩ(W − γ ∂G

∂W ) > G(W )− γ ∂G
∂W ·Gγ(W ) + γ

2∥Gγ(W )∥22 do
γ ← γ/2;

end
W ← proxλγΩ(W − γ ∂G

∂W );
end

Algorithm 3: BKerNN pseudocode.

To select the step-size γ for the proximal gradient descent step appropriately, we use a
backtracking line search, assuming G is locally Lipschitz. Starting with the previous step-
size, we multiply it by 1.5. If the backtracking condition is not satisfied, we divide γ by 2
and repeat. The backtracking condition is that G(proxλγΩ(W − γ ∂G

∂W )) should be smaller
than G(W )− γ ∂G

∂W ·Gγ(W ) + γ
2∥Gγ(W )∥22, where Gγ(W ) =

(
W −proxλγΩ(W − γ ∂G

∂W )
)
/γ.

This method was taken from Beck [2017].
With the outputted w1, . . . , wm, c, and α from the algorithm, the estimator is the

function f̂λ defined as f̂λ(x) = c + ∑n
i=1 αi

∑m
j=1

1
m(|w⊤

j xi| + |w⊤
j x| − |w⊤

j (x − xi)|)/2.
This formulation enables us to perform predictions on new data points and facilitates the
extraction of meaningful linear features through the learned weights (wj)j∈[m]. Remark
that we do not take into account the optimisation error in the rest of the chapter.

3.2 Convergence Guarantees on Optimisation Procedure

In this section, we discuss the convergence properties of the optimisation procedure. Al-
though we do not provide a formal proof due to differentiability issues, we highlight the
importance of the homogeneity of the Brownian kernel and present arguments suggesting
the robustness of the optimisation process.

We aim to apply the insights from Chizat and Bach [2022] and Chizat and Bach [2018],
which state that under certain assumptions, in the limit of infinitely many particles and an
infinitely small step-size, gradient descent optimisation converges to the global optimum
of the infinitely-many particles problem. Key assumptions include convexity with respect
to the probability distribution in the and homogeneity of a specific quantity Ψ, which we
define below. We reformulate our problem in line with Chizat and Bach [2022].

Considering the square loss with the basic penalty Ωbasic, the optimisation problem

106



4. Statistical Analysis

with m particles from Equation (4.10) can be rewritten as

min
w1,...,wm∈Rd

 inf
α∈Rn,c∈R

1
2n
∥Y −Kα− c1n∥22 + λ

2 α⊤Kα + λ

2m

m∑
j=1
∥wj∥


= min

w1,...,wm∈Rd

λ

2 Ỹ ⊤(K̃ + λnI
)−1

Ỹ + λ

2m

m∑
j=1
∥wj∥

 ,

where K = 1
m

∑m
j=1 K(wj) is the final kernel matrix, K(w) ∈ Rn×n is the kernel matrix for

kernel k(B) with projected data (w⊤x1, . . . , w⊤xn), Π = In−1n1
⊤
n is the centring matrix,

while Ỹ = ΠY is the centred output, and K̃ = ΠKΠ is the centred kernel matrix. We
solve this using proximal gradient descent. For the continuous case, the problem is

min
ν∈P(Rd)

(
inf

α∈Rn,c∈R

1
2n
∥Y −Kα− c1n∥22 + λ

2 α⊤Kα + λ

2

∫
Rd
∥w∥dν(w)

)
= min

ν∈P(Rd)

(
λ

2 Ỹ ⊤(K̃ + λnI
)−1

Ỹ + λ

2

∫
Rd
∥w∥ dν(w)

)
,

where K =
∫
Rd K(w) dν(w) and ν is a probability measure on Rd.

In both cases we minimise F (ν) (defined right below) over P(Rd) for the continuous
case and over Pn(Rd), which is the set of probability distributions anchored at n points
on Rd, in the m-particles case. F is defined as

F (ν) := Q

(∫
Rd

Ψ(w) dν(w)
)

,

where Q : Rn×n ×R→ R, Q(K, c′) = λ
2 Ỹ ⊤(K̃ + λnI

)−1
Ỹ + λ

2 c′, and Ψ : Rd → Rn×n ×R,
Ψ(w) = (K(w), ∥w∥). Note that Ψ is indeed positively 1-homogeneous, as the necessary
condition ∀w ∈ Rd, ∀κ > 0, Ψ(κw) = κΨ(w) is verified. Moreover, Q is convex in ν,
indicating the optimisation is well-posed (while we perform computations for the square
loss, we would also obtain a convex function for any convex loss).

Our method employs proximal gradient descent instead of basic gradient descent, which
is acceptable as both methods approximate the differential equation arising in the infinites-
imal step-size limit. Gradient descent is an explicit method, whereas proximal gradient
descent combines implicit and explicit updates [Süli and Mayers, 2003]. Moreover, it al-
lows to deal efficiently with the non-smoothness of the sparsity-inducing penalties (no
additional cost and improved convergence behaviour).

While our framework aligns with that of Chizat and Bach [2022], we cannot directly
apply their results due to the non-differentiability of Ψ around zero, a common issue in
such analyses. Despite this, our setup meets the crucial assumptions of convexity in Q
and the homogeneity of Ψ. See Experiment 1 in Section 5.2 for a numerical evaluation of
the practical significance of the homogeneity assumption.

4 Statistical Analysis
In this section our objective is to obtain high-probability bounds on the expected risk
of the BKerNN estimator to understand its generalisation capabilities. To achieve this,
we bound the Gaussian complexity (a similar concept to the Rademacher complexity,)
of the sets {f ∈ F∞ | max(f(0), Ω0(f)) ≤ D} for D > 0. Recall that F∞ is defined in
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Definition 4. We begin by introducing the Gaussian complexity in Definition 6, followed
by Lemma 31, which is used to simplify the quantities for subsequent bounding. We then
bound the Gaussian complexities using two distinct techniques in Sections 4.1.1 and 4.1.2.
The first technique yields a dimension-dependent bound with better complexity in sample
size, while the second provides a dimension-independent bound. Finally, in Section 4.2, we
derive the high-probability bound on the expected risk of BKerNN with explicit rates for
data with subgaussian square-rooted norm, using an extension of McDiarmid’s inequality
from Meir and Zhang [2003], before detailing the data-dependent quantities of the rates.
All of these results require few assumptions on the problem, and on the data-generating
mechanism in particular.

While our method resembles multiple kernel learning, the theoretical results from
MKL, which are often related to Rademacher chaos [e.g., Lanckriet et al., 2004, Ying
and Campbell, 2010] are not directly applicable. This is because, in our approach, the
learned weights are multi-dimensional and embedded within the kernel, rather than being
simple scalar weights used to combine predefined kernels. Thus, the unique structure of
our model requires different theoretical considerations.

4.1 Gaussian Complexity

Recall that the estimator BKerNN is defined as

f̂λ := arg min
f∈F

1
n

n∑
i=1

ℓ(yi, f(xi)) + λΩ(f),

where F is Fm := {f | f(x) = c + 1
m

∑m
j=1 gj(w⊤

j x), wj ∈ Sd−1, gj ∈ H, c ∈ R} in
practice for optimisation and F∞ := {f | f(x) = c +

∫
Sd−1 gw(w⊤x) dµ(w), gw ∈ H, µ ∈

P(Sd−1), c ∈ R, Ω0(f) < ∞} for statistical analysis. Although we considered vari-
ous penalties in Section 2.5, here we focus on f ∈ F∞ with Ω(f) = max(Ω0(f), |c|) =
max(Ω0(f), |f(0)|), where Ω0(f) was defined as

Ω0(f) = inf
c∈R,µ∈P(Sd−1),(gw)w∈HSd−1

∫
Sd−1
∥gw∥H dµ(w),

such that f(·) = c+
∫

Sd−1 gw(w⊤·)dµ(w) and corresponds to the basic penalty for Ωweights.
This is made possible through a well-defined mean-field limit; we leave the other penalties
to future work.

We now introduce the concept of Gaussian complexity [for more details, see Bartlett
and Mendelson, 2002].

Definition 6 (Gaussian Complexity). The Gaussian complexity of a set of functions G is
defined as

Gn(G) := Eε,Dn

(
sup
f∈G

1
n

n∑
i=1

εif(xi)
)

,

with ε a centred Gaussian vector with identity covariance matrix, and Dn := (x1, . . . , xn)
the data set consisting of i.i.d. samples drawn from the distribution of the random vari-
able X. Note that it only contains the covariates, not the response.

We aim to bound Gn({f ∈ F∞ | Ω(f) ≤ D}) for some D > 0. The discussion on the
Gaussian complexity of the space F∞ would yield the same bounds if Fm were considered
instead. However, since we demonstrated in Section 3.2 that optimisation in Fm and
optimisation in F∞ are closely related, we focus exclusively on F∞ in this section.
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First, we note that we can study the Gaussian complexity of a simpler class of functions,
as indicated by the following lemma, which allows us to deal with the constant and remove
the integral present in the definition of F∞.

Lemma 31 (Simplification of Gaussian Complexity). Let D > 0. Then,

Gn({f ∈ F∞ | Ω(f) ≤ D}) ≤ D

( 1√
n

+ Gn

)
with Gn := Gn({f | f(·) = g(w⊤·), ∥g∥H ≤ 1, w ∈ Sd−1}).

The proof can be found in Appendix A.5.1. We now need to bound Gn, which we
approach in two different ways. First, in Section 4.1.1, we use covering balls on the sphere
Sd−1, resulting in a dimension-dependent bound. Then, in Section 4.1.2, we approximate
functions in F∞ by Lipschitz functions, before using a covering argument, leading to a
dimension-independent bound at the cost of worst dependency in the sample size n. With
these bounds on Gn, we will derive results on the expected risk of the BKerNN estima-
tor, providing explicit rates depending on the upper bounds of Gn, without exponential
dependence on dimension.

4.1.1 Dimension-Dependent Bound

First, we note that the supremum over the functions g with ∥g∥H ≤ 1 can be obtained in
closed-form (see Lemma 34 in Appendix A.5.2). This reduces the problem to considering
the expectation of a supremum over the sphere, which we address using a covering of Sd−1.

Theorem 7 (Dimension-Dependent Bound). We have

Gn ≤ 8
√

d

n

√
log(n + 1)

√
EX∥X∥∗,

where ∥ · ∥∗ is the dual norm of ∥ · ∥. Recall that ∥ · ∥ defines the sphere Sd−1.

The bound on the Gaussian complexity obtained here is dimension-dependent due to
the covering of the unit ball in Rd, but it has a favourable dependency on the sample size.
For ease of exposition, we have replaced the original factor

√
log(1 + n/(2d)) + 1/(2d) + 1

with 8
√

log(n + 1). Recall that ∥ · ∥∗ = ∥ · ∥2 for the ℓ2 sphere and ∥ · ∥∗ = ∥ · ∥∞ for the
ℓ1 sphere. Note that the dependency on the data distribution is explicit and can be easily
bounded in different data-generating mechanisms, as discussed in Lemma 33 at the end
of Section 4.

Proof of Theorem 7. First, using Lemma 34, we have

Gn = Eε,Dn

(
sup

w∈Sd−1

√
ε⊤K(w)ε

n

)
,

where K(w) is the kernel matrix for the Brownian kernel with data (w⊤x1, . . . , w⊤xn).
We bound the supremum inside of the expectation using covering balls. Let M ∈ N∗

and WM be such that ∀w ∈ Sd−1, ∃w̃ ∈ WM ⊂ Sd−1 such that ∥w− w̃∥ ≤ ζ, i.e., we have
a ζ-covering of the sphere with its own norm in d dimensions. Fix w ∈ Sd−1 and w̃ such
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that ∥w − w̃∥ ≤ ζ. We then have

|
√

ε⊤K(w)ε−
√

ε⊤K(w̃)ε| =
∣∣∣∣∣
∥∥∥∥ n∑

i=1
εikw⊤xi

∥∥∥∥
H
−
∥∥∥∥ n∑

i=1
εikw̃⊤xi

∥∥∥∥
H

∣∣∣∣∣
≤
∥∥∥∥ n∑

i=1
εi(kw⊤xi

− kw̃⊤xi
)
∥∥∥∥

H
≤

n∑
i=1
|εi| · ∥kw⊤xi

− kw̃⊤xi
∥H

=
n∑

i=1
|εi|
√
|w⊤xi − w̃⊤xi| ≤

n∑
i=1
|εi|
√
∥w − w̃∥∥xi∥∗

≤
√
∥w − w̃∥

n∑
i=1
|εi|
√
∥xi∥∗ ≤ ζ1/2

n∑
i=1
|εi|
√
∥xi∥∗.

Next, we get

√
ε⊤K(w)ε =

√
ε⊤K(w̃)ε +

√
ε⊤K(w)ε−

√
ε⊤K(w̃)ε ≤

√
ε⊤K(w̃)ε + ζ1/2

n∑
i=1
|εi|
√
∥xi∥∗.

Taking the supremum and dividing by the sample size n,

sup
w∈Sd−1

√
ε⊤K(w)ε

n
≤ sup

w̃∈WM

√
ε⊤K(w̃)ε

n
+ ζ1/2

n∑
i=1
|εi|
√
∥xi∥∗. (4.12)

Considering the expectation over ε of Equation (4.12), we get

Eε

(
sup

w∈Sd−1

√
ε⊤K(w)ε

n

)
≤ Eε

(
sup

w̃∈WM

√
ε⊤K(w̃)ε

n

)
+ ζ1/2Eε

(
1
n

n∑
i=1
|εi|
√
∥xi∥∗

)
.

We now handle Eε

(
supw̃∈WM

√
ε⊤K(w̃)ε

n

)
using standard concentration tools for supre-

mum of infinitely many random variables. Consider t > 0, then

Eε

(
sup

w̃∈WM

√
ε⊤K(w̃)ε

)
≤

√√√√Eε

(
sup

w̃∈WM

ε⊤K(w̃)ε

)

≤
√

1
t

log
(
Eε

(
et sup

w̃∈WM ε⊤K(w̃)ε
))

=

√√√√1
t

log
(
Eε

(
sup

w̃∈WM

etε⊤K(w̃)ε

))

≤

√√√√1
t

log
(
Eε

( ∑
w̃∈WM

etε⊤K(w̃)ε

))

=
√√√√1

t
log

( ∑
w̃∈WM

Eε

(
etε⊤K(w̃)ε

))
.

Fix w̃ ∈ WM and consider Eε

(
etε⊤K(w̃)ε

)
. Diagonalising K(w̃) to Uw̃Dw̃U⊤

w̃ , we have that
U⊤

w̃ ε is still a Gaussian vector with identity covariance matrix. When t is small enough,
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i.e., ∀i ∈ [n], 2t(Dw̃)i < 1, or t < 1
2 maxi(Dw̃)i

,

Eε

(
etε⊤K(w̃)ε

)
= Eε

(
et
∑n

i=1(Dw̃)iε
2
i

)
=

n∏
i=1

Eε(et(Dw̃)iε
2
i )

=
n∏

i=1

∫
R

1√
2π

e(t(Dw̃)i−1/2)ε2
i dεi

=
n∏

i=1

∫
R

1√
2π

e(2t(Dw̃)i−1)
ε2

i
2 =

n∏
i=1

(1− 2t(Dw̃)i)−1/2.

Re-injecting this, we obtain

log
(
Eε

(
etε⊤K(w̃)ε

))
= log

(
n∏

i=1
(1− 2t(Dw̃)i)−1/2

)

≤ −1
2

n∑
i=1

log(1− 2t(Dw̃)i).

To bound this further, take t ≤ 1
4 max((Dw̃)i) , which implies both 2t(Dw̃)i < 1/2 and

− log(1− 2t(Dw̃)i) ≤ 4t(Dw̃)i, leading to

log
(
Eε

(
etε⊤K(w̃)ε

))
≤ 2t

n∑
i=1

(Dw̃)i ≤ 2t tr(K(w̃)) ≤ 2t
n∑

i=1
∥xi∥∗.

Taking t ≤ minw̃∈WM
1

4 max((Dw̃)i) , we obtain

Eε

(
sup

w̃∈WM

√
ε⊤K(w̃)ε

n

)
≤ 1

n

√
1
t

log
(
Me2t

∑n

i=1 ∥xi∥∗
)

≤ 1
n

√√√√1
t

(
log M + 2t

n∑
i=1
∥xi∥∗

)
.

Taking t = 1
4
∑n

i=1 ∥xi∥∗ , which fulfils the previously required conditions, we get

Eε

(
sup

w̃∈WM

√
ε⊤K(w̃)ε

n

)
≤ 1√

n

√∑n
i=1 ∥xi∥∗

n

√
4 log M + 2.

In the end, we obtain

Eε

(
sup

w∈Sd−1

√
ε⊤K(w)ε

n

)
≤ 1√

n

√∑n
i=1 ∥xi∥∗

n

√
4 log M + 2 + ζ1/2

√∑n
i=1 ∥xi∥∗

n
,

where we have used Eε|εi| ≤
√
Eε(εi)2 = 1 and

∑n

i=1

√
∥xi∥∗

n ≤
√∑n

i=1 ∥xi∥∗

n .
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We know that M ≤ (1 + 2/ζ)d [Wainwright, 2019, Lemma 5.7], yielding

Eε

(
sup

w∈Sd−1

√
ε⊤K(w)ε

n

)
≤

√∑n
i=1 ∥xi∥∗

n


√

4d log(1 + 2
ζ ) + 2

√
n

+ ζ1/2


≤

√∑n
i=1 ∥xi∥∗

n


√

4d log(1 + n
2d) + 2

√
n

+
√

4d

n


≤ 2

√∑n
i=1 ∥xi∥∗

n

√
d√
n

(√
log

(
1 + n

2d

)
+ 1

2d
+ 1

)

≤ 4

√∑n
i=1 ∥xi∥∗

n

√
d√
n

(√
log

(
1 + n

2d

)
+ 1

)

≤ 8

√∑n
i=1 ∥xi∥∗

n

√
d√
n

√
log(n + 1),

where to get the second line, we took ζ = 4d/n. By taking the expectation over the data
set Dn, since EDn

(√
n−1∑n

i=1 ∥xi∥∗
)
≤
√
E(∥X∥∗), we have the desired result.

4.1.2 Dimension-Independent Bound

We now bound the Gaussian complexity with a quantity that does not explicitly depend
on the dimension of the data. Recall that we aim to bound

Gn = Eε,Dn

(
sup

∥g∥H≤1,w∈Sd−1

1
n

n∑
i=1

εig(w⊤xi)
)

,

where ε is a centred Gaussian vector with an identity covariance matrix. First, recall that
the functions in H with norm bounded by 1 are not Lipschitz functions but are instead
1/2-Hölder functions (Lemma 24). Specifically, let g ∈ H, ∥g∥H ≤ 1, then for any a, b ∈ R,
we have |g(a)− g(b)| ≤ ∥ka − kb∥H =

√
|a− b|.

An interesting result for a fixed 1-Lipschitz function h is that we can apply the con-
traction principle [Bach, 2024, Proposition 4.3] to the Rademacher complexity. Informally,
this yields

Eε

(
sup

w∈Sd−1

1
n

n∑
i=1

εih(w⊤xi)
)
≤ Eε

(
sup

w∈Sd−1

1
n

n∑
i=1

εiw
⊤xi

)
,

where exceptionally ε is composed of independent Rademacher variables. The supremum
in the second term can then be taken explicitly. We will make use of this idea by first
approximating the functions in the unit ball of H with Lipschitz functions, before using
Slepian’s lemma [Ledoux and Talagrand, 1991, Corollary 3.14] to obtain similar results on
the Gaussian complexity.

Lemma 32 (Lipschitz Approximation). Let g ∈ H with ∥g∥H ≤ 1, and let ζ > 0. There
exists a (1/ζ)-Lipschitz function gζ : R→ R with gζ(0) = 0 such that ∥g − gζ∥∞ ≤ ζ.

The proof can be found in Appendix A.5.3. This lemma indicates that we can approx-
imate functions in the unit ball of the RKHS H up to any precision in the infinite norm
by Lipschitz functions with a Lipschitz constant equal to the inverse of the precision.
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Theorem 8 (Dimension-Independent Bound). If Sd−1 is the ℓ1 or the ℓ2 sphere, then

Gn ≤
6

n1/6

(
(log 2d)1/41∗=∞ + 1∗=2

)(
EDn

(
max
i∈[n]

(∥Xi∥∗)2
))1/4

.

Recall that in the ℓ1 sphere case, ∥ · ∥∗ = ∥ · ∥∞, and in the ℓ2 case ∥ · ∥∗ = ∥ · ∥2.
Here, we obtain a bound on the Gaussian complexity that depends only mildly on the
data dimension d, either not at all in the case of the ℓ2 sphere or logarithmically for
the ℓ1 sphere. This means that the estimator BKerNN can be effectively used in high-
dimensional settings, where the data dimension may be exponentially large relative to the
sample size. This improved dependency on the dimension d comes at the cost of a worse
dependency on the sample size n compared to Theorem 7. Note also that there can be an
implicit dependency on the dimension through the data distribution, which we discuss in
Lemma 33 at the end of Section 4 under different data-generating mechanisms.

Proof of Theorem 8. By applying Lemma 32, we have for any ζ1 > 0

Ĝn := Eε

(
sup

w∈Sd−1,∥g∥H≤1

1
n

n∑
i=1

εig(w⊤xi)
)

= Eε

(
sup

w∈Sd−1,∥g∥H≤1

1
n

n∑
i=1

εi

(
gζ1(w⊤xi) + g(w⊤xi)− gζ1(w⊤xi)

))

≤ Eε

(
sup

w∈Sd−1,∥g∥H≤1

(
1
n

n∑
i=1

εigζ1(w⊤xi) + ∥g − gζ1∥∞

))
.

We can then change the supremum over the unit ball of H to a supremum over Lipschitz
functions

Ĝn ≤ Eε

 sup
w∈Sd−1, gζ1 (1/ζ1)−Lip, gζ1 (0)=0

1
n

n∑
i=1

εigζ1(w⊤xi)

+ ζ1

= 1
ζ1
Eε

(
sup

h 1−Lip, h(0)=0
sup

w∈Sd−1

1
n

n∑
i=1

εih(w⊤xi)
)

+ ζ1

= 2

√√√√Eε

(
sup

h 1−Lip, h(0)=0
sup

w∈Sd−1

1
n

n∑
i=1

εih(w⊤xi)
)

,

by choosing the best ζ1. Technically, we can restrict ourselves to the following class
of function: F1−Lip := {h : [−maxi∈[n] ∥xi∥∗, maxi∈[n] ∥xi∥∗] → R | h(0) = 0, h is 1 −
Lipschitz}.

We then use a covering argument. To cover F1−Lip up to precision ζ2 > 0 in ∥ · ∥∞

norm with M functions from F1−Lip, one needs M ≤
(8 maxi∈[n] ∥xi∥∗

ζ2
+ 1

)
2

4 maxi∈[n] ∥xi∥∗

ζ2

[Luxburg and Bousquet, 2004, Theorem 17]. Let h1, . . . hM be such a covering. This yields
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that

Ĝn ≤ 2

√√√√Eε

(
sup

h∈F1−Lip

sup
w∈Sd−1

1
n

n∑
i=1

εih(w⊤xi)
)

≤ 2

√√√√Eε

(
sup

h∈{h1,...,hM }
sup

w∈Sd−1

1
n

∑
i

εih(w⊤xi)
)

+ ζ2,

by proceeding as with the covering of the unit ball of H.
We then use Lemma 35 to bound the expectation on the supremum of the finite set of

Lipschitz functions, which is inspired by Bartlett and Mendelson [2002]. This yields

Eε

(
sup

h∈{h1,...,hM },w∈Sd−1

1
n

n∑
i=1

εih(w⊤xi)
)

≤ Eε

∥∥∥∥
√

2
n

n∑
i=1

εixi

∥∥∥∥∗
+

√
8
∑n

i=1(∥xi∥∗)2

n2
√

2 log M

 . (4.13)

We then consider each term of Equation (4.13) separately, while also taking expectation
with regards to the data set. For the second term, using the bound on M [Luxburg and
Bousquet, 2004, Theorem 17] and basic inequalities to simplify the term, we have

Eε,Dn

√8
∑n

i=1(∥xi∥∗)2

n2
√

2 log M


≤ EDn

√8
∑n

i=1(∥xi∥∗)2

n2

√√√√4 maxi∈[n] ∥xi∥∗

ζ2
log 2 + log

(
8 maxi∈[n] ∥xi∥∗

ζ2
+ 1

)
≤ EDn

8

√∑n
i=1(∥xi∥∗)2

n2

√
maxi∈[n] ∥xi∥∗

ζ2


≤ 8√

n

1√
ζ2
EDn

(
max
i∈[n]

(∥xi∥∗)3/2
)
≤ 8√

n

1√
ζ2

(
EDn

(
max
i∈[n]

(∥xi∥∗)2
))3/4

.

G2
n

4 ≤ Eε,Dn

(∥∥∥∥
√

2
n

n∑
i=1

εixi

∥∥∥∥∗)
+ 8√

n

1√
ζ2

(
EDn

(
max
i∈[n]

(∥xi∥∗)2
))3/4

+ ζ2

≤ Eε,Dn

(∥∥∥∥
√

2
n

n∑
i=1

εixi

∥∥∥∥∗)
+ 2

 8√
n

(
EDn

(
max
i∈[n]

(∥xi∥∗)2
))3/4

2/3

≤ Eε,Dn

(∥∥∥∥
√

2
n

n∑
i=1

εixi

∥∥∥∥∗)
+ 2 4

n1/3

√√√√EDn

(
max
i∈[n]

(∥xi∥∗)2

)
,

by taking ζ
3/2
2 = 8√

n

(
EDn

(
maxi∈[n](∥xi∥∗)2

))3/4
in the second line.

Now for the first term from Equation (4.13) which we have to deal with still, consider
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first the case ∥ · ∥∗ = ∥ · ∥2 then,

Eε,Dn

(
∥
√

2
n

n∑
i=1

εixi∥2

)
≤

√√√√Eε,Dn

(
∥
√

2
n

n∑
i=1

εixi∥22

)

=
√

2
n

√√√√EDn

(
n∑

i=1
∥xi∥22

)
=
√

2√
n

√
EX

(
∥X∥22

)
.

In the other case where ∥ · ∥∗ = ∥ · ∥∞, we can use Boucheron et al. [2013, Theorem 2.5],
as for a fixed data set Dn, ∑n

i=1 εis(xi)a is a centred Gaussian vector with variance equal
to ∑n

i=1((xi)a)2 which is smaller than maxa∈[d]
∑n

i=1((xi)a)2. This yields that

Eε,Dn

(
∥
√

2
n

n∑
i=1

εixi∥∞

)
=
√

2
n
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We then have
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This yields that the last term of Equation (4.13) can be bounded

G2
n
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√
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√
2√
n
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)√
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) 8
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√√√√EDn

(
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hence

Gn ≤ (log 2d1∗=∞ + 1∗=2)1/4 6
n1/6

(
EDn

(
max
i∈[n]

(∥xi∥∗)2
))1/4

,

which concludes the proof.
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4.2 Bound on Expected Risk of Regularised Estimator

We now use the bounds on the Gaussian complexity we have obtained in Section 4.1 to
derive a bound on the expected risk of BKerNN. We show that, with explicit rates, the
expected risk of our estimator converges with high-probability to that of the minimiser for
data with subgaussian norms, which includes both bounded data and data with subgaus-
sian components. First, we provide a definition of subgaussian real variables, as given by
Vershynin [2018].

Definition 7 (Subgaussian Variables). Let Z be a real-valued (not necessarily centred)
random variable. Z is subgaussian with variance proxy σ2 if and only if

∀t > 0, max (P(Z ≥ t),P(Z ≤ −t)) ≤ e− t2
2σ2 .

We now present the main theoretical result of the chapter.

Theorem 9 (Bound on Expected Risk with High-Probability). Let the estimator
function be f̂λ := arg minf∈F∞ R̂(f) + λΩ(f). Assume the following:

1. Well-specified model: The minimiser f∗ := arg minf∈F∞,Ω(f)<+∞R(f) exists.

2. Convexity of the loss: For any (x, y) ∈ X × Y, f ∈ F∞ → ℓ(y, f(x)) is convex.

3. Lipschitz condition: The loss ℓ is L-Lipschitz in its second (bounded) argument,
i.e., ∀y ∈ Y, a ∈ {f(x) | x ∈ X , f ∈ F∞, Ω(f) ≤ 2Ω(f∗)}, a → ℓ(y, a) is L-
Lipschitz.

4. Data distribution: The data set (xi, yi)i∈[n] consists of i.i.d. samples of the random
variable (X, Y ) where 1 +

√
∥X∥∗ is subgaussian with variance proxy σ2.

Then, for any δ ∈ (0, 1), with probability larger than 1− δ, for λ = 12L
(

1√
n

+ Gn

)
+

288Lσ√
n

√
log 1

δ ,

R(f̂λ) ≤ R(f∗) + 24Ω(f∗)L
(

1√
n

+ Gn + 24σ√
n

√
log 1

δ

)
.

With the bounds on Gn from Theorem 7 and Theorem 8, recall that if ∥ · ∥ is either
∥ · ∥2 or ∥ · ∥1, we have

Gn ≤ min
( 6

n1/6
(
(log 2d)1/41∗=∞ + 1∗=2

)(
EDn

(
max
i∈[n]

(∥Xi∥∗)2))1/4
,

8
√

d

n

√
log(n + 1)

√
EX∥X∥∗

)
.

Proof of Theorem 9. This proof is primarily based on Bach [2024, Proposition 4.7].
Let f∗

λ be a minimiser of Rλ := R + λΩ over F∞. Consider the set Cτ := {f ∈ F∞ |
Rλ(f)−Rλ(f∗

λ) ≤ τ} for some τ > 0 that will be chosen later. Cτ is a convex set by the
convexity assumption on the loss ℓ.

First, we show that Cτ is included in the set Bτ := {f ∈ F∞ | Ω(f) ≤ Ω(f∗) + τ/λ}.
This inclusion follows from the optimality of f∗ and f∗

λ . Let f ∈ Cτ , then

Rλ(f) ≤ Rλ(f∗
λ) + τ ≤ Rλ(f∗) + τ ≤ R(f) + λΩ(f∗) + τ,
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yielding f ∈ Bτ .
Next, set τ = λΩ(f∗) with λ to be chosen later. We show that f̂λ belongs to Cτ with

high probability. If f̂λ /∈ Cτ , since f∗
λ ∈ Cτ and Cτ is convex, there exists a f̃ in the segment

[f̂λ, f∗
λ ] and which is on the boundary of Cτ , i.e. such that Rλ(f̃) = Rλ(f∗

λ) + τ . Since the
empirical risk is convex, we have R̂λ(f̃) ≤ max(R̂λ(f̂λ), R̂λ(f∗

λ)) = R̂λ(f∗
λ). Then,

R̂(f∗
λ)− R̂(f̃)−R(f∗

λ) +R(f̃) = R̂λ(f∗
λ)− R̂λ(f̃)−Rλ(f∗

λ) +Rλ(f̃)
≥ −Rλ(f∗

λ) +Rλ(f̃) = τ. (4.14)

Note that Ω(f̃) ≤ 2Ω(f∗) and Ω(f∗
λ) ≤ 2Ω(f∗). Combining Lemma 36 and Lemma 38,

for δ ∈ (0, 1), with probability greater than 1 − δ, we have for all f ∈ F∞ such that
Ω(f) ≤ 2Ω(f∗):

R̂(f∗
λ)−R̂(f)−R(f∗

λ) +R(f)

≤ EDn

(
sup

f∈F∞,Ω(f)≤2Ω(f∗)
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f∈F∞,Ω(f)≤2Ω(f∗)
R(f)− R̂(f)

)

+ Ω(f∗)96
√

2eLσ√
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√
log 1

δ

≤ 12Ω(f∗)L
( 1√

n
+ Gn

)
+ Ω(f∗)96

√
2eLσ√
n

√
log 1

δ
.

Now, choose λ such that τ = λΩ(f∗) ≥ 12Ω(f∗)L
(

1√
n

+ Gn

)
+ Ω(f∗)96

√
2eLσ√
n

√
log 1

δ .
This yields a contradiction with Equation (4.14). Thus, with such a λ, with probability
greater than 1− δ, we have f̂λ ∈ Cτ , hence

Rλ(f̂λ) ≤ Rλ(f∗
λ) + λΩ(f∗),

R(f̂λ) ≤ R(f∗) + 2λΩ(f∗).

For λ = 12L
(

1√
n

+ Gn

)
+ 288Lσ√

n

√
log 1

δ , this yields

R(f̂λ) ≤ R(f∗) + Ω(f∗)
(

24L

( 1√
n

+ Gn

)
+ 576Lσ√

n

√
log 1

δ

)
.

We now provide insightful comments on Theorem 9. We first remark that the result
could be proven more directly for bounded data using McDiarmid’s inequality, resulting
in a better constant.

The chosen λ does not depend on unknown quantities such as Ω(f∗), but only on known
quantities such as the Lipschitz constant of the loss, the sample size, or the dimension of
the data. This allows λ to be explicitly chosen for a fixed probability δ, although it is
usually computed through cross-validation.

Classical losses typically satisfy our assumptions. For instance, the square loss is always
convex and L-Lipschitz if the data and response are bounded, with L = 2 supy∈Y |y| +
4Ω(f∗) supx∈X ∥x∥∗. Similarly, the logistic loss is always convex and L-Lipschitz with
L = 1 (in the context of outputs in {−1, 1}).

Our approach stands out by requiring minimal assumptions on the data-generating
mechanism, which is less restrictive compared to other methodologies in the multi-index
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model domain. This emphasis on general applicability is also why we do not include
feature recovery results, as such outcomes typically necessitate strong assumptions about
the data and often require prior knowledge of the distribution.

The rates obtained depend explicitly on the dimension of the data through the bound
on the Gaussian complexity. Considering the first term in the minimum, we observe
that the bound is independent (up to logarithmic factors) of the data dimension, mak-
ing BKerNN suitable for high-dimensional problems. However, this bound has a less
favourable dependency on the sample size compared to the dimension-dependent bound,
which is the second term in the minimum. We conjecture that the actual rate has the
best of both worlds, achieving an explicit dependency on dimension d and sample size n
of n−1/2 (up to logarithmic factors).

Comparing the rate between BKerNN, neural networks with ReLU activations, and
kernel methods, we find that in well-specified settings (where the Bayes estimator belongs
to each function space considered), KRR yields a O(n−1/2) rate independent of dimension,
but require very smooth functions, for example, a Sobolev space of order s (i.e. the
derivatives up to order s are square integrable) is only a RKHS if s > d/2 [Bach, 2024,
Chapter 7]. Neural networks with ReLU activation achieve a similar rate with fewer
constraints, as their function space is typically larger than RKHS spaces [Bach, 2024,
Chapter 9].

If the model is not well-specified but we consider the Bayes predictor f∗ to be Lips-
chitz continuous, the rates for neural networks with ReLU activation and bounded corre-
sponding Banach norm γ1 (O(n−1/(d+5))) and kernel methods (O(n−1/(d+1))) [Bach, 2024,
Section 7.5, Section 9.4] do not beat the curse of dimensionality, and neither does our
setup.

However, in the case of linear latent variables, i.e., under the multiple index model
where f∗ = g∗(P ⊤x) with P a d × k matrix with k < d and orthonormal columns, the
RKHS cannot take advantage of this hypothesis and the rates remain unchanged. In
contrast, the neural network can, assuming that g∗ has bounded Banach norm, then we
only pay the price of the k underlying dimensions and not the full d dimensions [Bach,
2024, Section 9.4]. BKerNN also has this property, which is visible by using the simple
arguments presented in the discussion in Bach [2024, Section 9.3.5], which show that
Ω(f∗) ≤ Ω(g∗). Moreover, the optimisation process for BKerNN is much easier than
that of neural networks, and our function space is larger, underscoring the attractiveness
of BKerNN.

There is also an implicit dependency on the dimension in Theorem 9 through data-
dependent terms, namely the variance proxy σ2 or the expectations in the bound of Gn.
We now examine these quantities under two data-generating mechanisms: bounded and
subgaussian variables.

Lemma 33 (Analysis of Data-Dependent Terms in Theorem 9). The following inequalities
hold.

1. If X is bounded, i.e., ∥X∥∗ ≤ R almost surely, then

√
EX∥X∥∗ ≤

√
R,

(
EDn

(
max
i∈[n]

(∥Xi∥∗)2
))1/4

≤
√

R.

Moreover, 1 +
√
∥X∥∗ is subgaussian with variance proxy σ2 ≤ 1 +

√
R.

2. If X is a vector of subgaussian variables (not necessarily centred or independent)
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with variance proxy σ2
a for component Xa, then

√
EX(∥X∥2) ≤

√
6
(

d∑
a=1

σ2
a

)1/4

,
√
EX(∥X∥∞) ≤ 4(log d)1/4 max

a∈[d]

√
σa,

EDn

(
max
i∈[n]
∥Xi∥22

)1/4

≤ 4(1 + log(n))1/4
(

d∑
a=1

σ2
a

)1/4

,

EDn

(
max
i∈[n]
∥Xi∥∞

)1/4
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Furthermore, 1+
√
∥X∥2 is subgaussian with variance proxy σ2 ≤ (1+∑d

a=1 σa)2, and
1+

√
∥X∥∞ is subgaussian with variance proxy σ2 ≤ 2+maxa∈[d] σ2

a(1+
√

log(2d))2.

See the proof in Appendix A.5.5. Note that R usually does not implicitly depend on
the dimension in the ∥ · ∥∗ = ∥ · ∥∞ case, and R can typically be O(d1/2) in the ∥ · ∥2 case.
For the subgaussian mechanism, each σa typically does not depend on the dimension.

5 Numerical Experiments
In this section, we present and analyse the properties of BKerNN. The BKerNN im-
plementation in Python is fully compatible with Scikit-learn [Pedregosa et al., 2011], en-
suring seamless integration with existing machine learning workflows. The source code,
along with all necessary scripts to reproduce the experiments, is available at https:
//github.com/BertilleFollain/BKerNN. We define the scores and other estimators in
the section below.

5.1 Introduction to Scores and Competitors

In the experiments below, we use two scores to assess performance. The prediction score
is defined as the coefficient of determination, a classical metric in the statistics literature
[Wright, 1921], R2, which ranges from −∞ to 1, where a score of 1 indicates perfect
prediction, a score of 0 indicates that the model predicts no better than the mean of
the target values, and negative values indicate that the model performs worse than this
baseline. Mathematically, the R2 score is defined as follows

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2 , (4.15)

where yi are the true values, ŷi are the predicted values, ȳ is the mean of the true values,
and n is the number of samples.

The feature learning score measures the model’s ability to identify and learn the true
feature space (1 being the best, 0 the worst). It is computable only when the underlying
feature space (in the form of a matrix P ∈ Rd×k, with k the number of features) is known
and relevant only when features are of similar importance, which we have ensured in the
experiments below.

Depending on the regularisation type, the estimated feature matrix P̂ is computed via
singular value decomposition (SVD) for Ωfeature, Ωconcave feature or Ωbasic regularisation,
or by selecting the top k variables for Ωvariable or Ωconcave variable regularisation. We then
compute the projection matrices πP̂ and πP and calculate the feature learning error as the
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normalised Frobenius norm of their difference

πP̂ = P̂ (P̂ ⊤P̂ )−1P̂ ⊤ and πP = P (P ⊤P )−1P ⊤,

score =

1− ∥πP −πP̂ ∥2
F

2k ifk ≤ nfeatures
2 ,

1− ∥πP −πP̂ ∥2
F

2nfeatures−2k ifk > nfeatures
2 ,

(4.16)

where the score is 1 if k = nfeatures.
In several experiments, we compare the performance of BKerNN against ReLUNN

and BKRR. BKRR refers to Kernel Ridge Regression using the multi-dimensional Brown-
ian kernel k(mdB)(x, x′) = (∥x∥+∥x′∥−∥x−x′∥)/2. ReLUNN is a simple one-hidden-layer
neural network with ReLU activations, trained using batch stochastic gradient descent.

5.2 Experiment 1: Optimisation Procedure, Importance of Positive Ho-
mogeneous Kernel

In this experiment, we compare BKerNN with two methods that differ from BKerNN
only through the kernel that is used. We wish to illustrate the importance of the homogene-
ity assumptions discussed in Section 3.2. Specifically, we consider ExpKerNN with the
(rescaled) exponential kernel kexp(a, b) = e−|a−b|/2 and GaussianKerNN with the Gaus-
sian kernel kGaussian(a, b) = e−|a−b|2/2. Unlike the Brownian kernel used in BKerNN, the
exponential and Gaussian kernels are not positively 1-homogeneous.

We trained all three methods on a simulated data set, using cross-validation to select
the regularisation parameter λ while keeping other parameters fixed (m = 100, basic
regularisation, more details are provided in Appendix B.1). The training set consisted of
214 samples and the test set of 1024. The data had d = 45 dimensions with k = 5 relevant
features, and Gaussian additive noise with a standard deviation of 0.5. An orthogonal
matrix P of size d × d was sampled uniformly from the orthogonal group before being
truncated to size d × k. The covariates were sampled uniformly from [−1, 1]d, and the
target variable y was computed as y = 2π

∣∣∣∑k
a=1(P ⊤x)a

∣∣∣+ noise.
We displayed the mean squared error (MSE) on both the training and test sets for

the selected λ for each method in Figure 4.1. While all three methods perform very well
on the training set, the test set performance of ExpKerNN and GaussianKerNN is
significantly worse compared to BKerNN. This discrepancy is not due to suboptimal
regularisation choices, as cross-validation was used to select the best λ for each method.

Instead, the superior test performance of BKerNN underscores its effective opti-
misation process, avoiding the pitfalls of local minima that seem to trap ExpKerNN
and GaussianKerNN. Our observations in Figure 4.1 strongly support our discussion
in Section 3.2 on the critical role of the positive homogeneity of the kernel in ensuring
convergence to a global minimum.

5.3 Experiments 2 & 3: Influence of Parameters (Number of Particles
m, Regularisation Parameter λ, and Type of Regularisation)

In these experiments, we explore the impact of various parameters on the performance of
BKerNN. Detailed descriptions can be found in Appendix B.2, the results are presented
in Figure 4.2 and the R2 score is described in Equation (4.15).

Experiment 2. The first two subplots of Figure 4.2 illustrate the effects of the number of
particles m and the regularisation parameter λ while keeping the data generation process
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Figure 4.1: MSE across optimisation procedure for different kernels.

consistent. The data set is the same for the two subplots. We used 412 training samples
and 1024 test samples, with a data dimensiona of d = 20 and k = 5 relevant features. The
standard deviation of additive Gaussian noise was set to 0.1. The covariates were sampled
uniformly from [−1, 1]d. The target variable y was computed as y = ∑k

a=1 |2πxa|+ noise.
Number of Particles (m): the first subplot shows that with too few particles, the

estimator struggles to fit the training data, leading to poor performance on the test set.
However, beyond a certain threshold, increasing the number of particles does not yield
significant improvements in performance.

Regularisation Parameter (λ): the second subplot demonstrates the typical behaviour
of a regularised estimator. When λ is too small, the model overfits the training data,
resulting in poor test performance. Conversely, when λ is too large, the model underfits,
performing poorly on both the training and test sets. Optimal performance on both sets
is achieved with an intermediate value of λ.

Experiment 3. The third subplot in Figure 4.2 examines the influence of the type of
regularisation across three distinct data-generating mechanisms: (1) without underlying
features, i.e., where all of the data is needed, (2) with few relevant variables, (3) with
few relevant features. We used 214 training samples and 1024 test samples, with a data
dimensionality of d = 20 and k = 5 relevant features. The standard deviation of additive
Gaussian noise was set to 0.5, and the data set was generated 20 times with different
seeds. The covariates were always sampled uniformly on [−1, 1]d but the response was
generated in three different ways. In the “no underlying structure” data set, we had y =∑d

a=1 sin(Xa)+noise. In the “few relevant variables” data set, we had y = ∑k
a=1 sin(xa)+

noise. In the “few relevant features data set”, we sampled P a d × d matrix from the
orthogonal group uniformly, truncated it to size d× k and the response was generated as
y = ∑k

a=1 sin((P ⊤x)a) + noise. The mean and standard deviation of the R2 score on the
test set are reported.

When there is no underlying structure, all regularisers perform somewhat similarly.
However, for data sets featuring relevant variables, the Ωvariable and Ωconcave variable regular-
isations shine, delivering superior performance. Similarly for the Ωfeature and Ωconcave feature
regularisations on data sets with few relevant features. Remarkably, for data with underly-
ing structure, the concave versions of both Ωvariable and Ωfeature regularisations outperform
their non-concave counterparts. This demonstrates their superior ability to effectively se-
lect relevant information in the data while maintaining strong predictive power.
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Figure 4.2: Influence of parameters: left: m, middle: λ, right: type of penalty.

5.4 Experiment 4: Comparison to Neural Network on 1D Examples,
Influence of Number of Particles/Width of Hidden Layer m

In Experiment 4, we compare the learning capabilities of BKerNN against a simple
neural network, ReLUNN. We study three distinct functions, corresponding to each row
in Figure 4.3. In all rows, the training set is represented by small black crosses, while
the target function is shown in blue. The first two columns depict BKerNN using two
different numbers of particles: m = 1 and m = 5. The last three columns show results
for ReLUNN with varying numbers of neurons in the hidden layer: 1, 5, and 32. See
Appendix B.3 for more experimental details.

Notably, BKerNN demonstrates great learning capabilities, successfully capturing
the functions even with just one particle. Increasing the number of particles (second
column) offers minimal additional benefit, underscoring BKerNN’s efficiency. In stark
contrast, ReLUNN struggles significantly when limited to the same number of hidden
neurons as BKerNN’s particles. However, once the hidden layer is expanded to 32 neu-
rons, ReLUNN begins to show satisfactory learning capabilities. These results highlight
BKerNN’s superior efficiency in learning functions with a minimal number of particles,
outperforming ReLUNN, which requires a more complex architecture to achieve compa-
rable performance.

5.5 Experiment 5: Prediction Score and Feature Learning Score Against
Growing Dimension and Sample Size, a Comparison of BKerNN
with Brownian Kernel Ridge Regression and a ReLU Neural Net-
work

In Experiment 5, we evaluate the performance of BKerNN, BKRR and ReLUNN across
varying sample sizes and dimensions on simulated data sets. The estimators are presented
in Section 5.1. The R2 and feature learning score used to assess performance are described
in Equations (4.15) and (4.16) respectively. The results are presented in Figure 4.4. For
more details about the experiment, see Appendix B.4.

The two subplots on the top row of Figure 4.4 show the effect of increasing the sample
size while keeping the dimension fixed. In the two subplots of the bottom row, the sample
size is fixed, and the dimension is increased. For each combination of sample size and
dimension, ten data sets were generated. We display the two scores of each method on
each data set, as well as the average score across data sets. The feature learning score
for BKRR is not defined and, therefore, not displayed. The number of particles (for
BKerNN) and hidden neurons (for ReLUNN) is fixed at 50 across all experiments.

For all the data sets, the covariates were uniformly sampled in [−1, 1]d, the underlying
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Figure 4.3: Comparison to neural network on 1D examples.

features matrix P was uniformly sampled from the orthogonal group, then truncated to
have k = 3 relevant features, and the response was set as y =

∣∣∣∑k
a=1 sin

(
(P ⊤x)a

)∣∣∣.
In the first two subplots, the dimension is fixed at 15. As the sample size increases,

we observe improvements in the prediction scores of all three methods. However, the
prediction score of BKRR improves at a much slower pace. Both BKerNN and ReLUNN
achieve high prediction scores more rapidly, with BKerNN requiring fewer samples to do
so. Notably, BKerNN excels in feature learning, effectively capturing the underlying
feature space, while ReLUNN fails regardless of the number of samples.

In the last two subplots, where the sample size is fixed at 212, we notice a general
decline in performance as the dimension increases. BKRR shows the most rapid deteri-
oration because it cannot learn features, struggling significantly with higher dimensions.
In contrast, BKerNN demonstrates resilience to increasing dimensionality, maintaining
better performance compared to the other methods. ReLUNN falls somewhere in be-
tween, neither as robust as BKerNN nor as weak as BKRR. Similarly, for the feature
learning score, both BKerNN and ReLUNN show decreased performance, but BKerNN
is slightly less affected, underscoring its ability to handle high-dimensional data.

5.6 Experiment 6: Comparison on Real Data Sets Between BKerNN,
Brownian Kernel Ridge Regression and a ReLU Neural Network

In Experiment 6, we evaluate the R2 score (Equation 4.15), of four methods: BKRR,
BKerNN with concave variable regularisation, BKerNN with concave feature regular-
isation, and ReLUNN, across 17 real-world data sets. These were obtained from the
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Figure 4.4: Performance comparison across varying sample sizes and dimensions.

tabular benchmark numerical regression suite via the OpenML platform, as described by
Grinsztajn et al. [2022]. Each data set was processed to only include numerical variables,
cropped to 400 training samples and 100 testing samples, rescaled to have centred covari-
ates with standard deviation equal to one, with dimensionality varying across data sets as
shown in Figure 4.5. For both BKerNN and ReLUNN, the number of particles or hidden
neurons was set to twice the dimension of each data set, while the training parameters
were fixed. Details are available in Appendix B.5.
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Figure 4.5: Comparison of R2 scores on real data sets.

The results indicate that BKRR often performs the worst among all methods. In
contrast, BKerNN with concave feature regularisation and ReLUNN frequently emerge
as the best estimators, performing similarly well on average across the various data sets.
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6. Conclusion

6 Conclusion
To conclude, we have introduced a novel framework for feature learning and function es-
timation in supervised learning, termed Brownian kernel neural network (BKerNN). By
leveraging regularised empirical risk minimisation over averages of Sobolev spaces on one-
dimensional projections of the data, we established connections to kernel ridge regression
and infinite-width one-hidden layer neural networks. We provide an efficient computa-
tional method for BKerNN, emphasising the importance of the positive homogeneity of
the Brownian kernel. Through rigorous theoretical analysis, we demonstrated that, in the
well-specified setting for subgaussian data, BKerNN achieves convergence of its expected
risk to the minimal risk with explicit rates, potentially independent of the data dimension,
underscoring the efficacy of our approach. We have extensively discussed the relationship
between the space of functions we propose and other classical functions spaces. Numerical
experiments across simulated scenarios and real data sets confirm BKerNN’s superiority
over traditional kernel ridge regression and competitive performance with neural networks
employing ReLU activations, achieved with fewer particles or hidden neurons. Future
research directions include the development of more efficient algorithms for the compu-
tation of the estimator, improved analysis of the Gaussian complexity, and theoretical
investigation of other penalties.
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Appendix
A Extra Lemmas and Proofs
In this appendix, we present and/or prove some of the results needed in the main text.

A.1 Well-Definition of F∞

Recall the definition of F∞ given in Definition 4. Let

F∞ :=
{

f | f(·) = c +
∫

Sd−1
gw(w⊤·) dµ(w), Ω0(f) <∞

}
,

where c is a constant in R, Sd−1 is the unit sphere for some norm, µ ∈ P(Sd−1) is a
probability measure on Sd−1, and ∀w ∈ Sd−1, gw : R→ R ∈ H, with

Ω0(f) := inf
c∈R,(gw)w∈HSd−1 ,µ∈P(Sd−1)

∫
Sd−1
∥gw∥H dµ(w),

such that f = c +
∫

Sd−1 gw(w⊤·) dµ(w).
Now consider a different and more formal definition, which we show to be equivalent.

We define F∞ to be the space of functions f : Rd → R such that there exists a Borel
measure µ̃ such that f = c +

∫
H×Sd−1 g(w⊤·)dµ̃(g, w) with Ω0(f) < ∞,where Ω0 on f is

defined as the infimum of
∫

H×Sd−1 ∥g∥Hdµ̃(g, w) over all measures defining f . This is the
variation norm associated to the map (g, w) ∈ H × Sd−1 → g(w⊤·) (which is a function
from Rd to R), see Kurkova and Sanguineti [2001] and Bach [2024, Section 9.3.2].

Since
∫

H×Sd−1 ∥g∥Hdµ̃(g, w) does not depend on w, we can write

f = c +
∫

Sd−1

(∫
H

g(w⊤·)dµ̃(g|w)
)

dµ̃(w),

where we then see that if we define for w ∈ Sd−1 the function gw :=
∫

H gdµ̃(g|w), it indeed
belongs to H and ∥gw∥H ≤

∫
H ∥g∥Hdµ̃(g|w). For any optimal measure µ̃∗ in the definition

of Ω0(f), we must have the equality ∥gw∥H =
∫

H ∥g∥Hdµ̃∗(g|w), as otherwise we could
take a Dirac at gw for µ̃∗(g, w) and improve the infimum defining Ω0. We then have

Ω0(f) =
∫

H×Sd−1
∥g∥Hdµ̃(g, w) =

∫
Sd−1

(∫
H

g(w⊤·)dµ̃(g|w)
)

dµ̃(w) =
∫

Sd−1
∥gw∥Hdµ̃(w),

with the measure µ of the first definition being equal to the marginal of µ̃, which ends the
presentation of the equivalence between the two definitions.

A.2 Proofs of Section 2.3 Lemmas

Here we give the proofs of the lemmas describing characteristics of the function space F∞.

A.2.1 Proof of Lemma 24

Proof of Lemma 24. We first check that F∞ is a vector space.
Let f ∈ F∞ with f(·) = c +

∫
Sd−1 gw(w⊤·)dµ(w) and τ ∈ R then τf(·) = τc +∫

Sd−1 τgw(w⊤·)dµ(w) and τgw ∈ H. We also see that Ω(τf) = |τ |Ω(f), hence τf ∈ F∞.
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Now let f, f̃ ∈ F∞, then (f+f̃)(·) = c+c̃+
∫

Sd−1 gw(w⊤·)dµ(w)+
∫

Sd−1 g̃w(w⊤·)dµ̃(w) =
c + c̃ +

∫
Sd−1(d 2µ(w)

µ(w)+µ̃(w)gw + d 2µ̃(w)
µ(w)+µ̃(w) g̃w)(w⊤·)d(µ+µ̃

2 )(w). We also have that

Ω0(f + f̃) =
∫

Sd−1

∥∥∥∥d 2µ(w)
µ(w) + µ̃(w)gw + d 2µ̃(w)

µ(w) + µ̃(w) g̃w

∥∥∥∥
H

d
(

µ + µ̃

2

)
(w)

≤
∫

Sd−1
d 2µ(w)

µ(w) + µ̃(w)∥gw∥H + d 2µ̃(w)
µ(w) + µ̃(w)∥g̃w∥Hd

(
µ + µ̃

2

)
(w)

≤ Ω0(f) + Ω0(f̃) <∞,

hence f + f̃ belongs to F∞. This yields that F∞ is a vector space. We also see that
Ω(f + f̃) = max(f(0) + f̃(0), Ω0(f + f̃)) ≤ Ω(f) + Ω(f̃). Since Ω(f) = 0 ⇐⇒ f = 0, we
have that Ω is a norm on F∞.

We now check the Hölder continuity property

f(x)− f(x′) = c +
∫

Sd−1
gw(w⊤x)dµ(w)− c−

∫
Sd−1

gw(w⊤x′)dµ(w)

=
∫

Sd−1
⟨gw, kw⊤x − kw⊤x′⟩dµ(w)

|f(x)− f(x′)| ≤
∫

Sd−1
∥gw∥H∥kw⊤x − kw⊤x′∥Hdµ(w) ≤

∫
Sd−1
∥gw∥H

√
|w⊤(x− x′)|dµ(w)

≤
∫

Sd−1
∥gw∥H

√
∥x− x′∥∗dµ(w) ≤ Ω0(f)

√
∥x− x′∥∗.

A.2.2 Proof of Lemma 25

Proof of Lemma 25. Let us assume now that we only consider functions f with support
on the ball with centre 0, radius R and norm ∥ · ∥∗, which we denote B(0, R). Then we
can actually consider the functions gw which define F∞ to belong to H′ := {g : R → R |
g(0) = 0,

∫ R
−R(g′(t))2dt}, and it is still a RKHS with the same reproducing kernel. Let

f ∈ F∞, f = c +
∫

Sd−1 gw(w⊤·)dµ(w). We have assumed it has a Fourier decomposition,
such that

f(x) = 1
(2π)d

∫
Rd

f̂(ω)eiω⊤xdω,

and then we have

Ω0(f) ≤ 1
(2π)d

∫
Rd
|f̂(ω)|Ω0(eiω⊤x)dω

and we can then study Ω0(eiω⊤x).
We have eiω⊤x = gω

(
ω

∥ω∥
⊤x
)

with gω : t ∈ [−R, R] → eit∥ω∥ which belongs to (the

complex version of) H, with ∥gω∥H =
√∫ R

−R ∥ω∥2|eit∥ω∥|2dt ≤
√

2R∥ω∥.
This yields

Ω0(f) ≤
√

2R

(2π)d

∫
Rd
|f̂(ω)| · ∥ω∥dω.
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A.3 Proofs of Section 2.4 Lemmas

In this section we present the proof of lemmas used to transform the optimisation problem
defining BKerNN.

A.3.1 Proof of Lemma 26

Proof of Lemma 26. Our goal is to transform Equation (4.5). We begin with the following
trick for the m particles setting

1
m

m∑
j=1
∥gj∥H = inf

β∈Rm
+

1
2m

m∑
j=1

(
∥gj∥2H

βj
+ βj

)
.

Fix (wj)j∈[m] and (βj)j∈[m] in Equation (4.5), yielding the following minimisation prob-
lem on the functions (gj)j∈[m]

min
c∈R,g1,...,gm∈H

1
n

n∑
i=1

ℓ(yi, c + 1
m

m∑
j=1

gj(w⊤
j xi)) + λ

2
1
m

m∑
j=1

∥gj∥2H
βj

. (4.17)

Using the representer theorem [Schölkopf et al., 2001], we express each x → gj(w⊤
j x)

as
x→

n∑
i=1

α
(j)
i k(B)(w⊤

j xi, w⊤
j x),

which leads to
∥gj∥2H =

n∑
i,i′=1

α
(j)
i α

(j)
i′ k(B)(w⊤

j xi, w⊤
j xi′).

Rewriting the norm and evaluation in kernel form with K
(wj)
i,i′ = k(B)(w⊤

j xi, w⊤
j xi′), we

obtain
∥gj∥2H = (α(j))⊤K(wj)α(j),

and
gj(w⊤

j xi) = (K(wj)α(j))i.

Thus, we transform Equation (4.17) into

min
c∈R,α(1),...,α(m)∈Rd

1
n

n∑
i=1

ℓ(yi,
1
m

m∑
j=1

(K(wj)α(j))i + c) + λ

2
1
m

m∑
j=1

(α(j))⊤K(wj)α(j)

βj
.

We show that minimisation is attained for vectors α(j) equal to βjα for a single vector α.
Consider the convex problem

min
α(1),...,α(m)∈Rd

1
2

1
m

m∑
j=1

(α(j))⊤K(wj)α(j)

βj
,

subject to 1
m

∑m
j=1 K(wj)α(j) = z where z ∈ Rd. We define the Lagrangian

L(α(1), · · · , α(m), α) = 1
2

1
m

m∑
j=1

(α(j))⊤K(wj)α(j)

βj
+ α⊤

z − 1
m

∑
j

K(wj)α(j)

 .
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By taking the differential of L with respect to α(j) at the optimum, we get

∂L
∂α(j) = 1

m
K(wj)

(
α(j)

βj
− α

)
= 0.

The differential with respect to α yields that at the optimum, the constraint is verified,
i.e., z = 1

m

∑
j K(wj)α(j). We note that for α(j) = βjα, all equations are satisfied, yielding

the desired result.
We can then write Equation (4.5) as

min
w1,...,wm∈Rd,c∈R,β∈Rm

+ ,α∈Rn

1
n

n∑
i=1

ℓ(yi, (Kα)i + c) + λ

2 α⊤Kα + λ

2
1
m

m∑
j=1

βj ,

with the constraints ∀j ∈ [m], wj ∈ Sd−1, and K = 1
m

∑m
j=1 βjK(wj).

We notice that βjK(wj) = K(βjwj) due to the positive homogeneity of the Brownian
kernel. We therefore introduce the change of variable βjwj = w̃j

min
w̃,...,w̃m∈Rd,c∈R,β∈Rm

+ ,α∈Rn

1
n

n∑
i=1

ℓ(yi, (Kα)i + c) + λ

2 α⊤Kα + λ

2
1
m

m∑
j=1
∥w̃j∥,

with K = 1
m

∑m
j=1 K(w̃j) and no constraint on the norm of w̃j . For ease of exposition in

the main text, we replace w̃ by w.

A.3.2 Proof of Lemma 27

Proof of Lemma 27. The proof follows the same steps as the proof of Lemma 26, system-
atically replacing any 1

m

∑m
j=1 with the appropriate integral over Sd−1 with respect to

measure µ. Before the change of variables, the problem is

min
µ∈P(Sd−1),c∈R,(βw)w∈RSd−1

+ ,α∈Rn

1
n

n∑
i=1

ℓ(yi, (Kα)i + c) + λ

2 α⊤Kα + λ

2

∫
Sd−1

βwdµ(w),

where K =
∫

Sd−1 βwK(w) dµ(w) =
∫

Sd−1 K(βww) dµ(w). The change of variables βww = w̃
transforms the problem into

min
(βw)w∈RSd−1

+ ,ν∈P({βww,w∈Sd−1}),c∈R,α∈Rn

1
n

n∑
i=1

ℓ(yi, (Kα)i + c) + λ

2 α⊤Kα + λ

2

∫
Rd
∥w̃∥dν(w̃),

with K =
∫
Rd K(w̃)dν(w̃). We can consider the integral over Rd instead of {βww, w ∈ Sd−1}

by extending ν with ν(Rd \ {βww, w ∈ Sd−1}) = 0. This is equivalent to considering
the minimum over ν ∈ P(Rd) instead of the minimum over (βw)w∈Sd−1 ∈ R+ and ν ∈
P({βww, w ∈ Sd−1}).

The first minimum is smaller as it is considered over a larger space, but they are equal
because both the norm ∥ · ∥ and the kernel K are positively homogeneous. Hence, the
problem finally becomes

min
ν∈P(Rd),c∈R,α∈Rn

1
n

n∑
i=1

ℓ(yi, (Kα)i + c) + λ

2 α⊤Kα + λ

2

∫
Rd
∥w̃∥dν(w̃),

with K =
∫
Rd K(w̃)dν(w̃). Learning an optimal ν yields an optimal µ by taking dµ(w) =
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dν({w̃ ∈ Rd | w̃/∥w̃∥ = w}). For ease of exposition in the main text, we replace w̃
by w.

A.4 Proofs of Section 3.1 Lemmas

In this section, we provide the proofs of the lemmas used to compute the estimator.

A.4.1 Proof of Lemma 28

Proof of Lemma 28. For a fixed α, the optimal c is given by c = 1⊤Y
n −

1⊤Kα
n . Substituting

this back into the objective function, we obtain

min
α∈Rn

1
2n
∥ΠY −ΠKα∥22 + λ

2 α⊤Kα,

which is minimised for α satisfying (KΠK + nλK)α = KΠY . We can further simplify
this by observing that if (ΠK + nλI)α = ΠY , then the previous condition is satisfied.

From the equation nλα = ΠY − ΠKα, we can deduce that Πα = α because Π2 = Π.
Therefore, we can express α as α = Πα̃. Substituting this change of variable into the
original problem, we define K̃ := ΠKΠ and Ỹ := ΠY , transforming the problem into

min
α̃∈Rn

1
2n
∥Ỹ − K̃α̃∥22 + λ

2 α̃⊤K̃α̃.

This is a standard kernel ridge regression problem (noting that K̃ is still a valid kernel
matrix), for which the solution is known to be α̃ = (K̃ + nλI)−1Ỹ . We also have Πα̃ = α̃,
implying α = α̃ because one can show that 1⊤α̃ = 0. To see why, note that 1⊤α̃ = ⟨1, α̃⟩ =
⟨(K̃ + nλI)−11, Ỹ ⟩. Since (K̃ + nλI)−11 is proportional to 1 (as 1 is an eigenvector of
K̃ + nλI and its inverse), and ⟨Ỹ ,1⟩ = 0, we obtain the desired result.

Finally, we verify the optimal condition (KΠK + nλK)α = KΠY . Given (ΠKΠ +
nλI)α̃ = ΠY by definition, multiplying by K yields (KΠKΠ + nλK)α̃ = KΠY . Since
α̃ = α = Πα, the desired result follows.

A.4.2 Proof of Lemma 29

Proof of Lemma 29. First, we compute the derivative of G = λ
2 Ỹ ⊤(K̃ + λnI)−1Ỹ with

respect to wj

∂G

∂wj
=

n∑
i,i′=1

∂G

∂Ki,i′

∂Ki,i′

∂wj

= 1
m

n∑
i,i′=1

∂G

∂Ki,i′

(
sign(w⊤

j xi)xi + sign(w⊤
j xi′)xi′ − sign(w⊤

j (xi − xi′))(xi − xi′)
)

2 .

(4.18)

We know that

∂G

∂(K̃ + λnI)
= −λ

2 (K̃ + λnI)−1Ỹ Ỹ ⊤(K̃ + λnI)−1,
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thus

∂G

∂Ki,i′
=
∑
l,k

∂G

∂(K̃ + λnI)l,k

∂(ΠKΠ + λnI)l,k

∂Ki,i′

=
∑
l,k

−λ

2 ((K̃ + λnI)−1Ỹ Ỹ ⊤(K̃ + λnI)−1)l,kΠl,iΠi′,k

= −λ

2
(
Π(K̃ + λnI)−1Ỹ Ỹ ⊤(K̃ + λnI)−1Π

)
i,i′

= −λ

2 (Π(K̃ + λnI)−1Ỹ )i(Π(K̃ + λnI)−1Ỹ )i′ .

Substituting this back into Equation (4.18) and introducing Sj ∈ Rn×n with (Sj)i,i′ =
(sign(w⊤

j xi)xi + sign(w⊤
j xi′)xi′ − sign(w⊤

j (xi − xi′))(xi − xi′))/2, we get

∂G

∂wj
= − λ

2m

n∑
i,i′=1

(Π(K̃ + λnI)−1Ỹ )i(Π(K̃ + λnI)−1Ỹ )i′(Sj)i,i′

= − λ

2m
tr
(
(Π(K̃ + λnI)−1Ỹ )⊤Sj(Π(K̃ + λnI)−1Ỹ )

)
= − λ

2m
tr
(
((K̃ + λnI)−1Ỹ )⊤ΠSjΠ((K̃ + λnI)−1Ỹ )

)
.

This implies that we can replace (Sj)i,i′ with the i-th, i′-th component of any matrix
with the same centred version, such as S̃j where (S̃j)i,i′ = −sign(w⊤

j (xi − x′
i))(xi − x′

i),
yielding the desired result.

A.4.3 Proof of Lemma 30

Proof of Lemma 30. We consider each penalty separately.

1. For Ωbasic(W ) = 1
2m

∑m
j=1 ∥wj∥, the penalty corresponds to a group Lasso penalty

on W ∈ Rd×m, where the groups are the columns. The proximal operator is given
by: (

proxλγΩ(W )
)

j
=
(

1− λγ

2m

1
∥wj∥

)
+

wj ,

as detailed in [Bach et al., 2012, Section 3.3].

2. For Ωvariable(W ) = 1
2
∑d

a=1
( 1

m

∑m
j=1 |(wj)a|2

)1/2, this is a group Lasso setting where
the groups are the rows of W . The proximal operator is:

(proxλγΩ(w))(a) =
(

1− λγ

2
√

m

1
∥W (a)∥2

)
+

W (a),

also found in Bach et al. [2012, Section 3.3].

3. For Ωfeature(W ) = 1
2 tr

(( 1
m

∑m
j=1 wjw⊤

j

)1/2), this penalty corresponds to a Lasso
penalty on the singular values. Given W = USV ⊤ (SVD), we have:

proxλγΩ(W ) = US̃V ⊤ with S̃ =
(

1− λγ

2
√

m|S|

)
+

S,

using results from Bach et al. [2012, Section 3.3].
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4. For Ωconcave variable(W ) = 1
2s

∑d
a=1 log

(
1 + s

( 1
m

∑m
j=1 |(wj)a|2

)1/2), the loss is sepa-
rable along the d dimensions. Considering each W (a) separately, we compute the
proximal operator:

prox λγ
2s

log(1+ s√
m

∥·∥2)(W
(a)) = min

u(a)∈Rm

1
2∥W

(a) − u(a)∥22 + λγ

2s
log(1 + s√

m
∥u(a)∥2).

The subgradients of L(u(a)) := 1
2∥W

(a) − u(a)∥22 + λγ
2s log(1 + s√

m
∥u(a)∥2) are:

∂L
∂u(a) = −(W (a) − u(a)) + λγ

2s

s√
m

1
1 + s√

m
∥u(a)∥2

v(a),

where ∥v(a)∥2 ≤ 1 if u(a) = 0, and otherwise v(a) = u(a)/∥u(a)∥2.
For u(a) ̸= 0, there is a scalar c ∈ R+ such that u(a) = cW (a), yielding:

c

(
1 + λγ

2
√

m

1
c∥W (a)∥2

1
1 + sc√

m
∥W (a)∥2

)
= 1.

This is a second-order polynomial in c that can be solved explicitly. The determinant
∆ is

∆ =
(
1− s√

m
∥W (a)∥2

)2 − 4
(

λγ

2
√

m

1
∥W (a)∥2

− 1
)

s√
m
∥W (a)∥2.

When ∆ ≤ 0, the proximal operator is u(a) = 0. Otherwise, it suffices to compare
the two possible values of c and choose the one for which L is the smallest.

5. For Ωconcave feature(W ) = 1
2s

∑d
a=1 log

(
1+ s√

m
σa(w1, . . . , wn)

)
, we combine the results

of the third and fourth items above. The proximal operator is

proxλγΩ(W ) = US̃V ⊤,

where S̃ is obtained by replacing all ∥W (a)∥2 by σa in the computations of the
proximal of Ωconcave variable.

A.5 Extra Lemma and Proofs Related to Section 4 Except Section 4.2

Here we provided the proofs of the lemmas used to bound the Gaussian complexity.

A.5.1 Proof of Lemma 31

Proof of Lemma 31. Recall that

Gn({f ∈ F∞, Ω(f) ≤ D}) = Eε,Dn

(
sup

f∈F∞,Ω0(f)≤D,c≤D

1
n

n∑
i=1

εif(xi)
)

.
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We start by considering the expectation over ε only. Using the definitions, we obtain

Eε

(
sup

f∈F∞,Ω(f)≤D

1
n

n∑
i=1

εif(xi)
)

= Eε

(
sup

|c|≤D,
∫

Sd−1 ∥gw∥Hdµ(w)≤D

1
n

n∑
i=1

εi

(
c +

∫
Sd−1

gw(w⊤xi)dµ(w)
))

= Eε

(
D

1
n

∣∣∣∣∣
n∑

i=1
εi

∣∣∣∣∣+ sup∫
Sd−1 ∥gw∥Hdµ(w)≤D

1
n

n∑
i=1

εi

∫
Sd−1
⟨gw, k

(B)
w⊤xi
⟩dµ(w)

)

≤ D
1√
n

+ Eε

(
sup∫

Sd−1 ∥gw∥Hdµ(w)≤D

∫
Sd−1

1
n

n∑
i=1

εi⟨gw, k
(B)
w⊤xi
⟩dµ(w)

)

For the second term of the equation right above, we then have equality to

= Eε

(
sup∫

Sd−1 ∥gw∥Hdµ(w)≤D

∫
Sd−1

∣∣ 1
n

n∑
i=1

εi⟨gw, k
(B)
w⊤xi
⟩
∣∣dµ(w)

)

= Eε

(
sup∫

Sd−1 ∥gw∥Hdµ(w)≤D

sup
w∈Sd−1

∣∣ 1
n

n∑
i=1

εi⟨gw, k
(B)
w⊤xi
⟩
∣∣)

= Eε

(
sup

w∈Sd−1,∥g∥H≤D

∣∣ 1
n

n∑
i=1

εi⟨g, k
(B)
w⊤xi
⟩
∣∣)

= Eε

(
sup

w∈Sd−1,∥g∥H≤D

∣∣⟨g,
1
n

n∑
i=1

εik
(B)
w⊤xi
⟩
∣∣) = Eε

(
sup

w∈Sd−1,∥g∥H≤D

⟨g,
1
n

n∑
i=1

εik
(B)
w⊤xi
⟩
)

= DEε

(
sup

w∈Sd−1,∥g∥H≤1

1
n

n∑
i=1

εi⟨g, k
(B)
w⊤xi
⟩
)

= DEε

(
sup

w∈Sd−1,∥g∥H≤1

1
n

n∑
i=1

εig(w⊤xi)
)

.

Taking the expectation over the data set on both sides yields the desired result.

A.5.2 Lemma 34 and its Proof

This lemma provides an explicit formula for computing the supremum over functions
within the unit ball ofH, which we can then use for the calculation of Gaussian complexity.
Lemma 34 (Optimal g in Gaussian Complexity). For any data set (x1, . . . , xn), w ∈ Rd,
with K(w) ∈ Rn×n the kernel matrix of k(B) with the data projected on w and ε ∈ Rn,

sup
∥g∥H≤1

1
n

n∑
i=1

εig(w⊤xi) = 1
n

√
ε⊤K(w)ε

Proof of Lemma 34. By applying the definitions, we obtain

sup
∥g∥H≤1

1
n

n∑
i=1

εig(w⊤xi) = sup
∥g∥H≤1

1
n

n∑
i=1

εi⟨g, k
(B)
w⊤xi
⟩ = sup

∥g∥H≤1
⟨g,

1
n

n∑
i=1

εik
(B)
w⊤xi
⟩

= 1
n

〈 ∑n
i=1 εik

(B)
w⊤xi

∥
∑n

i=1 εik
(B)
w⊤xi
∥H

,
n∑

j=1
εjk

(B)
w⊤xj

〉

= 1
n
∥

n∑
i=1

εik
(B)
w⊤xi
∥H = 1

n

√
ε⊤K(w)ε,
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which is the desired result.

A.5.3 Proof of Lemma 32

Proof of Lemma 32. Define gζ such that gζ(0) = 0 and g′
ζ(x) = min(|g′(x)|, 1/ζ) sign(g′(x)).

Note that ∥g′
ζ∥∞ ≤

1
ζ , thus gζ is 1

ζ -Lipschitz. Additionally, for any a ∈ R,

|gζ(a)− g(a)| =
∣∣∣∣∫ a

0

(
g′

ζ(t)− g′(t)
)

dt

∣∣∣∣
≤
∫ a

0

∣∣∣g′
ζ(t)− g′(t)

∣∣∣ dt ≤
∫ +∞

−∞
1|g′(t)|≥1/ζ

(
|g′(t)| − 1/ζ

)
dt

≤
∫ +∞

−∞
1|g′(t)|≥1/ζ |g′(t)|dt ≤

∫ +∞

−∞
ζ|g′(t)|2 dt

≤ ζ since
∫ +∞

−∞

(
g′(t)

)2 dt ≤ 1,

yielding the desired result.

A.5.4 Lemma 35 and its Proof

Lemma 35 (Gaussian Complexity of Finite Set of Lipschitz Functions). Let h1, . . . hM

be 1-Lipschitz functions from R to R and let ε be a random centred Gaussian vector with
identity covariance matrix. Then

Eε

(
sup

h∈{h1,...,hM },w∈Sd−1

1
n

n∑
i=1

εih(w⊤xi)
)

≤ Eε

∥∥∥∥
√

2
n

n∑
i=1

εixi

∥∥∥∥∗
+

√
8
∑n

i=1(∥xi∥∗)2

n2
√

2 log M

 .

This lemma is inspired by Bartlett and Mendelson [2002].

Proof of Lemma 35. We use Slepian’s lemma [Ledoux and Talagrand, 1991, Corollary
3.14]. For h ∈ {h1, . . . hM}, w ∈ Sd−1, let

Xh,w := 1
n

n∑
i=1

εih(w⊤xi) and Yh,w =
√

2
n

n∑
i=1

εiw
⊤xi +

M∑
j=1

1h=hj
ε̃j

√
8
∑n

i=1(∥xi∥∗)2

n2 ,

where ε̃ is a centred Gaussian vector with identity covariance matrix independent of ε.
Notice that for h, h̃ ∈ {h1, . . . hM}, w, w̃ ∈ Sd−1, we have

Eε((Xh,w −Xh̃,w̃)2) = 1
n2

n∑
i=1

(h(w⊤xi)− h̃(w̃⊤xi))2

≤ 1
n2

n∑
i=1

(h(w⊤xi)− h(w̃⊤xi) + h(w̃⊤xi)− h̃(w̃⊤xi))2

≤ 2
n2

n∑
i=1

(h(w⊤xi)− h(w̃⊤xi))2 + (h(w̃⊤xi)− h̃(w̃⊤xi))2.
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We can then deal with the two terms separately. For the left term, the fact that h is
1-Lipschitz yields that

2
n2

n∑
i=1

(h(w⊤xi)− h(w̃⊤xi))2 ≤ 2
n2

n∑
i=1

(w⊤xi − w̃⊤xi)2.

Then, using the fact that h− h̃ is 2-Lipschitz and h(0) = h̃(0) = 0, we have

2
n2

n∑
i=1

(h(w̃⊤xi)− h̃(w̃⊤xi))2 = 2
n2

n∑
i=1

(h(w̃⊤xi)− h̃(w̃⊤xi)− (h(0)− h̃(0))2

≤ 2
n2

n∑
i=1

1h̸=h′4(w⊤xi)2 ≤ 1h̸=h̃

8
n2

n∑
i=1

(∥xi∥∗)2.

All in all Eε((Xh,w − Xh̃,w̃)2) ≤ Eε((Yh,w − Yh̃,w̃)2) therefore we can apply Slepian’s
lemma and obtain

Eε

(
sup

h∈{h1,...,hM },w∈Sd−1

1
n

n∑
i=1

εih(w⊤xi)
)

≤ Eε

 sup
h∈{h1,...,hM },w∈Sd−1

√
2

n

n∑
i=1

εiw
⊤xi +

M∑
j=1

ε̃j1h=hj

√
8
∑n

i=1(∥xi∥∗)2

n2

 .

We then remark that the first term of the expectation does not depend on h and that
we can take the supremum over the sphere explicitly, while the second term does not
depend on w and we can also take the supremum over {h1, . . . , hM} explicitly

Eε

(
sup

h∈{h1,...,hM },w∈Sd−1

1
n

n∑
i=1

εih(w⊤xi)
)

≤ Eε

 sup
w∈Sd−1

√
2

n

n∑
i=1

εiw
⊤xi + sup

h∈{h1,...,hM }

m∑
j=1

ε̃j1h=hj

√
8
∑n

i=1(∥xi∥∗)2

n2


≤ Eε

 sup
w∈Sd−1

√
2

n

n∑
i=1

εiw
⊤xi + sup

j∈[M ]
ε̃j

√
8
∑n

i=1(∥xi∥∗)2

n2


≤ Eε

∥∥∥∥
√

2
n

n∑
i=1

εixi

∥∥∥∥∗
+

√
8
∑n

i=1(∥xi∥∗)2

n2
√

2 log M

 .

A.5.5 Proof of Lemma 33

Proof of Lemma 33. We begin with the bounded case. The bounds on the expectations
are clearly valid. Then, since 1+

√
∥X∥∗ is a bounded variable, it is necessarily subgaussian

with a variance proxy bounded by (1+
√

R)2

2 log(2) ≤ (1 +
√

R)2 [Vershynin, 2018, Proposition
2.5.2 (iv)].

Next, we consider the subgaussian case. Using the Cauchy-Schwarz inequality, we
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handle the case where ∥ · ∥∗ = ∥ · ∥2 using Vershynin [2018, Proposition 2.5.2]

√
EX(∥X∥2) ≤

(
EX(∥X∥22)

)1/4 ≤
√

6
( d∑

a=1
σ2

a

)1/4
.

For the ∥ · ∥∞ case, applying Vershynin [2018, Exercise 2.5.10] with the constant made
explicit yields the desired result.

For the second expectation with ∥ · ∥∗ = ∥ · ∥2, we have

EDn

(
max
i∈[n]
∥Xi∥22

)
= Emax

i∈[n]

d∑
a=1

((Xi)a)2 ≤
d∑

a=1
Emax

i∈[n]

(
(Xi)a

)2
≤

d∑
a=1

1
t

log
(
E
(
et maxi∈[n]((Xi)a)2)) ≤ d∑

a=1

1
t

log
(
nE
(
et((Xi)a)2))

,

for all t > 0. We can then bound this by ∑d
a=1

1
t log(net(6

√
2eσa)2) for t < 1/(6

√
2eσa)2,

yielding:

EDn

(
max
i∈[n]
∥Xi∥22

)
≤ 72e(1 + log(n))

d∑
a=1

σ2
a.

The same proof technique applies to EDn

(
maxi∈[n] ∥Xi∥2∞

)
, yielding the desired result.

Finally, we consider the subgaussianity of 1 +
√
∥X∥∗. Note that the sum of two

subgaussian variables is subgaussian. Using Vershynin [2018, Proposition 2.5.2 (ii)], for
two real random variables Z and Z̃ with variance proxies σ2 and σ̃2 respectively, we have
that Z + Z̃ is subgaussian with variance proxy (σ + σ̃)2. Additionally, the absolute value
of a subgaussian variable is also subgaussian with the same variance proxy [Vershynin,
2018, Proposition 2.5.2].

For ∥ · ∥ = ∥ · ∥2, we have 1 +
√
∥X∥2 ≤ 1 +∑d

a=1 |Xa|. Since 1 and Xa are subgaussian
variables, this yields the desired result.

For ∥ · ∥∞, for all t > 0,

P(∥X∥∞ ≥
√

2σ2 log(2d) + t) ≤ 2de− (
√

2σ2 log(2d)+t)2

2σ2

≤ 2e
− t2

2σ2 − t
√

log(2d)√
2σ2 ≤ 2e− t2

2σ2 .

Thus, ∥X∥∞ −
√

2σ2 log(2d) is subgaussian with variance proxy σ2. Therefore, ∥X∥∞
is subgaussian with variance proxy bounded by σ2(1 +

√
log(2d))2. Then, 1 +

√
∥X∥∞

is subgaussian because it is less than 2 + ∥X∥∞, which is subgaussian [Vershynin, 2018,
Proposition 2.5.2] with a variance proxy bounded by that of 2+∥X∥∞, yielding the desired
result.

A.6 Lemmas Needed for Section 4.2 and their Proofs

Here we provide lemmas necessary for the proof of Theorem 9 and the analysis of its
distribution-dependent terms.

A.6.1 Lemma 36 and its Proof

Lemma 36 relates the Gaussian complexity to useful quantities to bound the expected
risk.
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Lemma 36. (Use of Gaussian Complexity) Let D > 0 and the data set Dn = (xi, yi)i∈[n]
consists of i.i.d. samples of the random variable (X, Y ) ∈ X × Y. Assume that the loss
ℓ is L-Lipschitz in its second (bounded) argument, i.e., ∀y ∈ Y, a ∈ {f(x) | x ∈ X , f ∈
F∞, Ω(f) ≤ D}, a→ ℓ(y, a) is L-Lipschitz. Then, we have

EDn

(
sup

f∈F∞,Ω(f)≤D
R̂(f)−R(f) + sup

f∈F∞,Ω(f)≤D
R(f)− R̂(f)

)
≤ 6DL

( 1√
n

+ Gn

)
.

Proof of Lemma 36. By Bach [2024, Proposition 4.2], we have

EDn

(
sup

f∈F∞,Ω(f)≤D
R̂(f)−R(f) + sup

f∈F∞,Ω(f)≤D
R(f)− R̂(f)

)

≤ 4Eε̃,Dn

(
sup

f∈F∞,Ω(f)≤D

1
n

n∑
i=1

εiℓ(yi, f(xi))
)

,

where ε̃ consists of i.i.d. Rademacher variables.
Next, applying the contraction principle from Bach [2024, Proposition 4.3], we get

Eε̃,Dn

(
sup

f∈F∞,Ω(f)≤D

1
n

n∑
i=1

εiℓ(yi, f(xi))
)
≤ Eε̃,Dn

(
sup

f∈F∞,Ω(f)≤D

1
n

n∑
i=1

ε̃if(xi)
)

.

Then, using Wainwright [2019, Exercise 5.5], we have

Eε̃,Dn

(
sup

f∈F∞,Ω(f)≤D

1
n

n∑
i=1

ε̃if(xi)
)
≤
√

π

2Eε,Dn

(
sup

f∈F∞,Ω(f)≤D

1
n

n∑
i=1

εif(xi)
)

,

where ε ∼ N (0, Id).
Finally, by applying Lemma 31 and combining all these results, we obtain the desired

inequality

EDn

(
sup

f∈F∞,Ω(f)≤D
R̂(f)−R(f) + sup

f∈F∞,Ω(f)≤D
R(f)− R̂(f)

)
≤ 6DL

( 1√
n

+ Gn

)
.

A.6.2 Lemma 37 and its Proof

Lemma 37 describes a useful property on the expectation of the hyperbolic cosine of a
subgaussian random variable.

Lemma 37. (Technical Lemma on Subgaussian Random Variables) Let Z be a real-valued
random variable (not necessarily centred) that is subgaussian (see Definition 7.) Then, for
all λ ∈ R,

E (cosh(λZ)) ≤ e(6
√

2e)2σ2λ2
.

Proof of Lemma 37. An equivalent definition of subgaussianity is that for all λ ∈ R, if
6
√

2eσ|λ| ≤ 1, then E(eλ2Z2) ≤ e(6
√

2e)2σ2λ2 , see Vershynin [2018, Proposition 2.5.2].
First, in the case |λ| ≤ 1

6
√

2eσ
. Using the inequality ex ≤ x + ex2 for all x ∈ R, we get

E (cosh(λZ)) ≤ E
(

λZ + eλ2Z2 − λZ + eλ2Z2

2

)
= E

(
eλ2Z2) ≤ e(6

√
2e)2σ2λ2

.
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Next, consider the case |λ| ≥ 1
6
√

2eσ
. We can bound the expectation as follows

E (cosh(λZ)) ≤ E
(
e|λZ|

)
= E

(
e

6
√

2eσ|λ| |Z|
6

√
2eσ

)
≤ E

(
e

(6
√

2e)2σ2λ2/2+ Z2
2(6

√
2e)2σ2

)
≤ e(6

√
2e)2σ2λ2/2e1/2 ≤ e(6

√
2e)2σ2λ2

,

where we use the fact that (6
√

2e)2σ2λ2 ≥ 1 to justify the final inequality.
Thus, in both cases, we have shown that E (cosh(λZ)) ≤ e(6

√
2e)2σ2λ2 , proving the

lemma.

A.6.3 Lemma 38 and its Proof

Lemma 38 is an application of McDiarmid’s inequality (a specific version by Meir and
Zhang [2003] for subgaussian random variables) to our learning problem.

Lemma 38. (Use of McDiarmid’s Inequality) Let D > 0 and δ ∈ (0, 1). Assume that
1 +

√
∥X∥∗ is subgaussian with variance proxy σ2 and that the loss ℓ is L-Lipschitz in its

second (bounded) argument, i.e., ∀y ∈ Y, a ∈ {f(x) | x ∈ X , f ∈ F∞, Ω(f) ≤ D}, a →
ℓ(y, a) is L-Lipschitz. Then, with probability greater than 1− δ,

sup
f∈F∞,Ω(f)≤D

R̂(f)−R(f) + sup
f∈F∞,Ω(f)≤D

R(f)− R̂(f)

≤ EDn

(
sup

f∈F∞,Ω(f)≤D
R̂(f)−R(f) + sup

f∈F∞,Ω(f)≤D
R(f)− R̂(f)

)

+ 48
√

2eLDσ√
n

√
log 1

δ
.

Proof of Lemma 38. We use a specific version of McDiarmid’s inequality [Meir and Zhang,
2003, Theorem 3]. First, we show that the conditions for applying the theorem are met.
Let H̃ := {h : (x, y) ∈ X × Y → ℓ(y, f(x)) − ℓ(y, f̃(x)) | Ω(f) ≤ D, Ω(f̃) ≤ D}. For any
λ > 0, we have

EX,Y

(
sup

h,h̃∈H̃

cosh(2λ(h(X, Y )− h̃(X, Y )))
)

= EX,Y

 sup
f,Ω(f)≤D,f̃ ,Ω(f̃)≤D

cosh(2λ(ℓ(Y, f(X))− ℓ(Y, f̃(X))))


≤ EX,Y

 sup
f,Ω(f)≤D,f̃ ,Ω(f̃)≤D

cosh(2λL|f(X)− f̃(X)|)


≤ EX,Y

 sup
f,Ω(f)≤D,f̃ ,Ω(f̃)≤D

cosh(4λLD(1 +
√
∥X∥∗))


= EX,Y

(
cosh(4λLD(1 +

√
∥X∥∗))

)
≤ e(48

√
e)2L2D2σ2λ2/2,

where the last inequality follows from Lemma 37. Hence, the condition is verified with M =
48
√

eLDσ and applying Meir and Zhang [2003, Theorem 3] yields the desired result.
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B Numerical Experiments
In this section, we detail the parameters and methodology used in the different experi-
ments. The code needed to run the experiments can be found at https://github.com/
BertilleFollain/BKerNN.

B.1 Experiment 1: Optimisation procedure, Importance of Positive Ho-
mogeneous Kernel

Each method was tuned using 5-fold cross-validation with grid search, using negative mean
squared error as the scoring metric. The training was set for 20 iterations and the step-
size parameter (γ) was set to 500, with backtracking enabled. Regularisation parameter
candidates were λ = {0.05, 0.1, 0.5, 1, 1.5} × 2 maxi∈[n] ∥xi∥2/n. Once the regularisation
parameters had been selected, we trained from scratch for 200 iterations, with the other
parameters kept as before.

B.2 Experiments 2 & 3: Influence of Parameters (Number of Particles
m, Regularisation Parameter λ, and Type of Regularisation)

For Experiment 2, in the first subplot, we set the step-size parameter γ to 500 and the
number of iterations to 50. The regularisation type was set to Ωbasic and the regularisation
parameter to λ = 0.02. The tested values of m were 1, 3, 5, 7, 10, 15, 20, 30, 40, and 50.

In the second subplot, we varied the regularisation parameter λ in 0.0005, 0.001, 0.005,
0.01, 0.02, 0.05, 0.1, 0.3, and 0.5, while keeping the number of particles fixed at m = 10.

In Experiment 3, the BKerNN model was instantiated with a fixed number of particles
m = 20, step-size parameter γ = 500, and number of iterations 25. The regularisation
parameter λ was set as 2 maxi∈n ∥xi∥2/n.

B.3 Experiment 4: Comparison to Neural Network on 1D Examples,
Influence of Number of Particles/Width of Hidden Layer m

In Experiment 4, we investigated the performance of two learning methods, BKerNN and
ReLUNN, on three different 1D functions. The training set always consists of 128 samples,
with x sampled uniformly between -1 and 1, while the target function/test set without noise
consists of 1024 equally spread out points. The response was then generated as follows.
For the first function, y = sin(2πx) + noise, for the second y = sign(sin(2πx)) + noise,
for the third y = 4|x + 1 − 0.25 − ⌊x + 1 − 0.25⌋ − 0.5| − 1 + noise, where the noise is
always normal, centred and with standard deviation equal to 0.2. For BKerNN, the
regularisation parameter λ was selected from [0.005, 0.01, 0.02, 0.05] using 5-fold cross-
validation and the negative mean squared error score. ReLUNN was trained using a
batch size of 16, a number of iterations equal to 400,000 and a step-size of 0.005.

B.4 Experiment 5: Prediction Score and Feature Learning Score Against
Growing Dimension and Sample Size, a Comparison of BKerNN
with Kernel Ridge Regression and a ReLU Neural Network

In Experiment 5, data sets were generated with input data uniformly sampled within
the hypercube [−1, 1]d. The feature matrix P was generated from the orthogonal group.
For each configuration, training and test sets of sizes n and ntest = 201, respectively,
were created. Output labels y were computed as yi = |∑k

a=1(sin((P ⊤xi)a))|, with k = 3
relevant features.
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The first two plots fixed the dimension at 15 and varied sample sizes across [10, 20, 50,
100, 150, 200, 300, 400, 500]. The last two plots fixed the sample size at 212 and varied
dimensions across [3, 5, 10, 20, 30, 40, 50]. Each configuration was repeated 10 times with
different random seeds.

For BKerNN: λ was set to 2 maxi∈[n](∥xi∥2)/n, the number of particles was m = 50,
the regularisation type Ωfeature, the number of iterations 20, and step-size γ = 500 with
backtracking line search. For BKRR, λ was chosen similarly to BKerNN. For ReLUNN,
the number of neurons was set to 50, learning rate to 0.05, batch size to 16, and number
of iterations to 1500.

B.5 Experiment 6: Comparison on Real Data Sets Between BKerNN,
Kernel Ridge Regression and a ReLU Neural Network

In Experiment 6, BKRR and both versions of BKerNN had regularisation parameter
fixed equal to maxi∈[n](∥xi∥2)/n, where n is the number of training samples (i.e. 400).
Backtracking line search was used for BKerNN and the starting step-size was 500, while
the number of iterations was 40. For ReLUNN, the batch size was 16, while the number
of iterations was 2500 which corresponds to 100 epochs, and the step-size was set to 0.01.
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Conclusion

In this thesis, we addressed the challenge of supervised learning, where it is assumed that
the prediction function is composed of a non-parametric function and hidden linear fea-
tures, as described by the multi-index model. Our research was dedicated to developing
algorithmic methods that enhance learning in this context, with the added benefit that
these methods can be adapted to the variable selection setting. We exclusively employed
the regularised empirical risk minimisation framework, given its versatility across various
learning problems where a risk can be defined, thus possibly extending its applicability
beyond standard supervised learning. We focused on making minimal assumptions about
the data-generating process and ensuring our algorithms were computationally feasible.
Moreover, we sought to provide explicit convergence rates that do not suffer from expo-
nential dependency on the original data dimension and to limit the assumptions about the
true prediction function.

Overall, our work highlights the potential of leveraging hidden linear structures within
data to significantly enhance the learning process within a regularised empirical risk min-
imisation framework. By exploring these structures, we lay the groundwork for developing
more computationally and statistically efficient methods that can be applied to a broader
range of problems. Below, we briefly summarise the contributions of each chapter.

In Chapter 2, we introduced KTNGrad. This method employs regularised empirical
risk minimisation within a reproducing kernel Hilbert space (RKHS) that includes the
partial derivatives of the kernel, with regularisation applied through a trace norm penalty
on the sample matrix of gradients. The optimisation procedure for KTNGrad is based on
a convex problem with an explicit convergence rate, though it is computationally intensive.
Our theoretical analysis of well-specified settings demonstrated that KTNGrad achieves
convergence rates for the expected risk that do not exponentially depend on the data
dimension. While the method reliably recovers the underlying features in a safe filter
manner, it does so without explicit rates and without recovering the dimensionality of the
hidden linear features. Numerical experiments confirmed that KTNGrad is competitive
with the state-of-the-art method MAVE in estimating the features when the dimension
is known. However, further enquiry showed that the assumption for the true regression
function to belong to usual RKHS is not compatible with the multi-index model, which
led us to study a broader space of functions that is better adapted to both the multi-index
model and the variable selection framework in the next chapter.

Indeed, in Chapter 3, we introduced RegFeaL, a method that leverages the decom-
position of functions in an orthonormal Hermite polynomials basis of the Hilbert space
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of square-integrable function w.r.t. the multidimensional normal measure. This approach
provides a clear interpretation of dependency on select variables or linear projections
through the basis coefficients, which allows the introduction of a derivatives-based over-
lapping group LASSO penalty. By exploiting the orthogonality and rotational invariance
of Hermite polynomials, RegFeaL iteratively aligns the data with the leading directions
through an alternative minimisation process. However, the method requires a complex
sampling technique to approximate the kernel at each optimisation step, which adds com-
putational difficulty. Despite this, and without making strong assumptions about the true
regression function, we demonstrated that the expected risk converges to the minimal
risk, albeit with an exponential dependency on the data dimension. Numerical experi-
ments showcased the ability of RegFeaL to effectively learn features in a similar manner
to MAVE in some settings. Nonetheless, using an infinite-dimensional basis introduces
computational burdens due to the sampling process and results in exponential terms in
the theoretical analysis. Consequently, in the next chapter, we explored an alternative
infinite-dimensional function space, which, while also computationally intractable due to
its definition using an integral, is easily approximated by particles with theoretical justi-
fications.

Consequently, in Chapter 4, we introduced BKerNN, a novel approach combining
the strengths of kernel methods and neural networks. Our method represents functions
as expectations over Sobolev spaces across all possible one-dimensional projections of the
data, bridging the gap between kernel ridge regression and infinite-width one-hidden-layer
neural networks. By leveraging the positive homogeneity of the Brownian kernel, we devel-
oped a principled optimisation procedure using particles to approximate the expectation.
Theoretical analysis shows that BKerNN achieves convergence of the expected risk to
the minimal risk in well-specified settings, with rates that are independent of the data
dimension up to logarithmic factors, though this comes at the cost of increased sensitivity
to sample size. We briefly discussed the adaptivity of the method to misspecified settings.
Extensive experiments on both simulated and real datasets demonstrated BKerNN’s su-
perior performance compared to traditional kernel ridge regression and its competitive
advantage over neural networks with ReLU activations.

Throughout this thesis, a consistent theme has been the careful design of an appro-
priate function space for non-parametric supervised learning with hidden linear features.
This journey led us through various infinite-dimensional spaces, starting with reproducing
kernel Hilbert spaces, progressing to Hilbert spaces with a Hermite polynomials basis, and
ultimately culminating in a non-Hilbertian space.

We now present some perspectives of interest related to the presented work.

Computational savings for BKerNN from Chapter 4. Although already applica-
ble to relatively high-dimensional settings, as seen in the numerical experiments of Chap-
ter 4, the complexity of BKerNN remains high: O(n3 + mn2d + md min(m, d)) (with m
the number of particles). Computational savings could be obtained through techniques
such as the Nyström approximation [Drineas and Mahoney, 2005, Rudi et al., 2015] or
random features, which have been routinely used in the context of kernel methods, for
example by Rahimi and Recht [2007]. This would extend the scope of applications of
BKerNN to higher-dimensional contexts where it is most relevant.

Explicit adaptivity results for BKerNN from Chapter 4. We have briefly dis-
cussed the adaptivity of BKerNN to hidden linear features in misspecified settings. This
aspect is crucial because, in practical scenarios, we cannot be certain whether we op-
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erate within a well-specified framework. The adaptivity of BKerNN arises from the
fact that, under the standard multi-index model (f∗ = g∗(P ⊤·)), the norm inequal-
ity Ω0(f∗) ≤ Ω0(g∗) holds, which implies that the estimation of f∗ benefits from the
reduced dimensionality of g∗. However, this relationship is not entirely explicit. Fu-
ture research could aim to develop more explicit theoretical results on the adaptivity of
BKerNN to latent linear variables, building on the work done for neural networks by
Bach [2024, Chapter 9].

Extensions to other function estimation problems with latent linear features.
In this work, we focused on supervised learning with covariate/response pairs, where the
goal is to infer the relationship between them. However, by employing the regularised
empirical risk minimisation framework, we have developed methods that remain relevant
whenever a risk function can be defined. This includes areas like control theory [see Dorf
and Bishop, 2000] and reinforcement learning [see Sutton and Barto, 2018], where problems
such as estimating the value function could benefit from leveraging latent linear features.

Exploration of non-linear feature learning. The empirical success of deep neural
networks is largely attributed to their ability to learn complex non-linear features [Good-
fellow et al., 2016, Chapter 15]. A logical next step in relation to the present thesis is
extending our framework to encompass non-linear feature learning by, for instance, in-
vestigating neural networks with two hidden layers. This is a promising area of research,
with introductory works such as Moniri et al. [2024]. This extension would allow to retain
the benefits of the smaller-dimensional features, as in the multi-index model and methods
presented in this thesis, while also enhancing the model’s ability to capture more complex
patterns.
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Nous résumons ici en français les contributions présentées dans la thèse. Afin de compren-
dre les enjeux auxquels répondent ces contributions, nous conseillons fortement la lecture
de l’introduction donnée dans le Chapitre 1 (en anglais), qui contient également les in-
formations présentées ici. Nous proposons trois méthodes distinctes pour l’apprentissage
non-paramétrique avec des caractéristiques linéaires cachées, en utilisant la minimisation
du risque empirique régularisé. Avant d’aborder les contributions de chaque chapitre, nous
fournissons un aperçu de la structure de la thèse. Chaque chapitre introduit une méth-
ode différente, avec ses propres notations (dont la majorité est commune) et résultats,
permettant une lecture indépendante. Les chapitres sont présentés dans l’ordre de leur
développement au cours de cette thèse.

Dans le Chapitre 1, l’objectif est d’établir le cadre théorique et les motivations de cette
thèse, en situant notre travail dans le contexte plus large de la recherche actuelle. Nous
commençons par un examen des concepts clés de l’apprentissage supervisé et de la théorie
de l’apprentissage, en mettant particulièrement l’accent sur les garanties de généralisation
pour des échantillons finis, qui sont essentielles pour évaluer les performances des algo-
rithmes proposés. Le chapitre explore ensuite les défis posés par les données de grande
dimension, en se concentrant particulièrement sur l’utilisation des hypothèses de parci-
monie pour gérer et réduire la complexité des problèmes d’apprentissage. Ensuite, nous
nous intéressons au modèle multi-index, en fournissant une revue des méthodologies ex-
istantes dans ce domaine. Le chapitre se termine par un résumé et une analyse des trois
principales contributions de cette thèse. Cette partie résumant les contributions est ici
retranscrite en français.

Dans le Chapitre 2, nous explorons une approche novatrice en tant qu’extension du
travail de Rosasco et al. [2013] sur la sélection de variables. La méthode incorpore une
pénalité de norme nucléaire sur la matrice empirique des gradients dans des espaces de
Hilbert à noyau reproduisant (RKHS) qui incluent les dérivées partielles de leurs noyaux.
L’idée clé est d’exploiter les gradients de la fonction pour capturer la structure linéaire
sous-jacente des données.

Dans le Chapitre 3, nous étendons le cadre de la minimisation du risque empirique
en introduisant une pénalité de type LASSO groupé basée sur les dérivées et appliquée
aux fonctions représentées dans une base de polynômes de Hermite orthonormaux multi-
dimensionnels. En utilisant les propriétés d’orthogonalité et d’invariance par rotation des
polynômes de Hermite, nous faisons pivoter les données de manière itérative, les alignant
avec les directions les plus informatives.
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Dans le Chapitre 4, nous introduisons une méthode novatrice utilisant des moyennes
d’espaces de Sobolev sur des projections unidimensionnelles des données. La méthode
combine des méthodes à noyaux et des réseaux de neurones avec une couche cachée
de largeur infinie. Notre approche, centrée sur le noyau Brownien, remplace la non-
linéarité des activations ReLU dans les réseaux de neurones par une fonction issue d’un
RKHS. L’homogénéité positive du noyau Brownien est essentielle pour guider le processus
d’optimisation.

Enfin, la conclusion aborde plusieurs questions de recherche importantes restées ou-
vertes. Nous passons maintenant à un examen plus détaillé de chaque contribution, en
commençant par une discussion des méthodes, suivie des principaux résultats, et en termi-
nant par une analyse des forces et faiblesses de chaque approche. Les références pertinentes
pour les contributions complètes sont fournies dans les chapitres correspondants.

Pénalité de Norme Nucléaire sur la Matrice Empirique des Gradients

Ici, nous présentons le travail non encore publié du Chapitre 2, tandis que le code corre-
spondant est disponible à https://github.com/BertilleFollain/KTNGrad.

Méthode. Dans le Chapitre 2, en nous appuyant sur les travaux de Rosasco et al. [2013]
sur la sélection de variables, nous introduisons une méthode novatrice appelée KTNGrad.
L’idée clé derrière KTNGrad est d’exploiter les informations sur l’espace des caractéris-
tiques sous-jacent contenues dans les gradients tout en opérant dans des espaces de Hilbert
à noyau reproduisant suffisamment réguliers. Cela nous permet d’éviter le calcul des gra-
dients par différences finies et, à la place, de les calculer directement grâce aux propriétés
intrinsèques des RKHS.

Nous commençons par noter que si le minimiseur du risque attendu (ici considéré
pour la perte quadratique), f∗, satisfait le modèle multi-index, alors il existe une fonction
g∗ et une matrice P ∈ Rd×s telles que f∗ = g∗(P ⊤·). En supposant que toutes les
quantités pertinentes soient bien définies, cela implique que pour tout x ∈ X , le gradient
satisfait ∇f∗(x) = P∇g∗(P ⊤x). Par conséquent, le gradient en un point donné contient
des informations sur l’espace des caractéristiques sous-jacent. Plus formellement, pour
toute fonction f appartenant à l’espace de Sobolev H1(ρX) (avec ρX la distribution des
covariables), défini comme H1(ρX) := {f ∈ L2(ρX) | ∀a ∈ [d], ∂f(x)/∂x(a) ∈ L2(ρX)},
nous pouvons exprimer la matrice de covariance des gradients de f comme suit

cov(∇f) := cov(∇f(X)) = EρX

(
∇f(X)∇f(X)T

)
∈ Rd×d.

Dans ce cadre, la matrice de covariance des gradients de la véritable fonction f∗ satisfait
cov (∇f∗) = P cov

(
∇g∗(P T X)

)
P T . En supposant que le rang de cov

(
∇g∗(P T X)

)
est

égal à s, le nombre de caractéristiques linéaires, il en résulte que le rang de cov(∇f∗) est
également s, qui est typiquement bien plus petit que d.

Cependant, comme le rang est à la fois non continu et non convexe, il présente des défis
significatifs en tant que pénalité d’optimisation. En outre, le calcul direct de la matrice
de covariance est irréalisable puisque ρX est inconnu. Pour surmonter ces problèmes et
en suivant des extensions classiques de la régularisation par norme ℓ1, nous utilisons une
relaxation convexe en employant la norme nucléaire (∥ · ∥∗) de la matrice d’échantillons
des gradients

∇nf := (∇f(x1)T ,∇f(x2)T , . . . ,∇f(xn)T )T /
√

n ∈ Rn×d,

145

https://github.com/BertilleFollain/KTNGrad


Résumé des Contributions

qui estime tr
(√

cov(∇f)
)
, fournissant une alternative convexe au rang de cov(∇f).

Il reste deux défis à relever : comment calculer les gradients aux points de données,
étant donné que les différences finies sont souvent peu fiables et instables dans le contexte
des covariables aléatoires, et comment calculer efficacement le minimiseur du problème
de minimisation du risque empirique régularisé. C’est ici que les espaces de Hilbert à
noyau reproduisant (RKHS) deviennent avantageux. Soit H un RKHS associé à un noyau
reproduisant k. Si nous supposons que le noyau est deux fois différentiable, comme c’est
le cas pour le noyau Gaussien, alors pour tout a ∈ [d], (∂ak)x := t → ∂k(x, t)/∂xa (la
dérivée par rapport à la a-ième composante de x) appartient également à H pour tout
x ∈ X . De plus, pour toute fonction f ∈ H, la dérivée partielle de f en x par rapport à xa

peut être calculée comme ∂f(x)
∂xa

= ⟨f, (∂ak)x⟩H. Cette propriété nous permet de calculer
les gradients aux points de données directement en utilisant la structure du RKHS, sans
avoir besoin de différences finies. En outre, la minimisation du risque empirique dans un
RKHS est généralement abordable grâce au théorème de représentation, qui garantit que
le minimiseur peut être exprimé comme une combinaison linéaire des fonctions noyau aux
points de données.

Formellement, l’estimateur KTNGrad f̂ est défini par le problème d’optimisation
suivant

f̂τ = arg min
f∈H
R̂(f) + 2τ∥∇nf∥∗ + τν∥f∥2H,

où la perte définissant le risque est la perte quadratique, et τ > 0 est un paramètre de
régularisation à choisir. Une régularisation supplémentaire consistant en la norme du
RKHS au carré est utilisée pour garantir la stabilité computationnelle et statistique, avec
un paramètre fixe et très petit ν.

Résultat principal. Les principales propriétés statistiques de KTNGrad sont résumées
dans le théorème informel suivant, qui décrit les hypothèses clés ainsi que les capacités de
prédiction et d’apprentissage des caractéristiques linéaires.

Théorème 1 (Informel). Supposons que la véritable fonction de régression f∗ appartient
à H, avec un noyau reproduisant deux fois différentiable.

• Convergence du risque attendu : Le risque attendu de KTNGrad converge vers
le risque minimal R(f∗) sans dépendance exponentielle à la dimension des données
d. Plus précisément, il existe une constante universelle C > 0 telle que pour tout
δ ∈ (0, 1], avec probabilité au moins 1− δ,

R(f̂τ )−R(f∗) ≤ C

(
1√
n

( 1√
τν

+ 1
)2

+
√

τ

ν

d5/4

n1/4

)
log 6 + 2d

δ

+τ
(
2∥∇f∗∥∗ + ν∥f∗∥2H

)
.

• Récupération des caractéristiques linéaires cachées : Lorsque la taille de
l’échantillon augmente, la méthode est capable de récupérer l’espace des caractéris-
tiques sous-jacent en norme de Frobenius lorsque la dimension du sous-espace des
caractéristiques est connue et, sinon, en tant que filtre sûr. Pour toute suite positive
(τn)n∈N telle que τn → 0 et (

√
nτ2

n)−1 → 0 lorsque n → ∞, avec ΠQ la matrice de
projection associée à une matrice Q, nous avons

∥ΠP −ΠP̂s
∥2F

P→ 0 et ∥ΠP (Id −ΠP̂ )∥2F
P→ 0.
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Analyse. Nous résumons les principales contributions et les enseignements tirés du
Chapitre 2.

• Taux de convergence : KTNGrad atteint des taux de convergence pour le risque
attendu qui ne dépendent pas de manière exponentielle de la dimension des données,
répondant à un défi majeur dans l’apprentissage non-paramétrique en grande di-
mension. Cependant, ce résultat repose sur l’hypothèse forte que le modèle est bien
spécifié (f∗ ∈ H), et il existe encore une dépendance polynomiale à la dimension des
données.

• Récupération des caractéristiques : KTNGrad démontre une forte capacité à
récupérer l’espace des caractéristiques sous-jacent, comme le confirment les analyses
statistiques et les résultats expérimentaux. Cependant, bien que la méthode identifie
systématiquement les caractéristiques linéaires, elle ne parvient pas à récupérer sa
dimension. Cela est visible à la fois dans les expériences et dans la théorie, car
nous prouvons seulement que l’estimation de la dimension est asymptotiquement
supérieure à la dimension réelle de l’espace des caractéristiques en raison de la semi-
continuité inférieure du rang, conduisant à un filtre sûr. Toutefois, une méthode
adaptative pourrait pallier ce problème.

• Coût computationnel : La méthode nécessite la résolution d’un problème d’opti-
misation convexe avec une pénalité de norme nucléaire sur la matrice empirique des
gradients. Bien que cela assure de bonnes propriétés de convergence, cela entraîne
un coût computationnel substantiel de O(n3d4). Même si l’emploi d’une approxima-
tion de Nyström pourrait aider à réduire une partie de la charge computationnelle,
la dépendance aux dérivées de toutes les variables et le contexte de travail dans un
espace de Hilbert à noyau reproduisant rendent la méthode intrinsèquement gour-
mande en ressources.

• Espace fonctionnel inadéquat : Une limitation conceptuelle importante de KT-
NGrad réside dans le fait que les RKHS associés aux noyaux usuels ne sont pas bien
adaptés au modèle multi-index. Le problème central provient de l’incompatibilité
entre les hypothèses f∗ ∈ H et f∗ = g∗(P ⊤·), une critique qui s’applique également
au cadre de sélection de variables discuté par Rosasco et al. [2013]. Par exemple,
appartenir au RKHS correspondant au noyau gaussien impose que toutes les dérivées
premières de f∗ soient de carré intégrables par rapport à la mesure de Lebesgue sur
Rd. Cependant, dans le cas simple d’une seule variable pertinente f∗(x) = g∗(x1),
cette condition devient

∫
Rd

(
(g∗)′(x1)

)2dx1 . . . dxd < ∞, ce qui n’est possible que
dans des cas très particuliers. Ce raisonnement nous conduit à explorer dans le
chapitre suivant un espace de Hilbert de fonctions ayant une base orthonormée de
polynômes de Hermite. La décomposition des fonctions dans cette base révèle que
l’espace fonctionnel s’aligne bien avec le modèle multi-index et le cadre de sélection
de variables, offrant une interprétation claire de la dépendance à quelques variables
ou projections linéaires à travers les coefficients de la base.

Pénalité de LASSO Groupé sur une Décomposition en Polynômes de
Hermite

Cette contribution correspond au contenu du Chapitre 3, qui a été accepté par le journal
Electronic Journal of Statistics: Follain and Bach [2024b], tandis que le code est disponible
à https://github.com/BertilleFollain/RegFeaL.

147

https://github.com/BertilleFollain/RegFeaL


Résumé des Contributions

Méthode. La méthode proposée, RegFeaL, exploite l’orthogonalité et l’invariance par
rotation des polynômes de Hermite normalisés pour effectuer une sélection de variables ou
un apprentissage des caractéristiques linéaires. Tout d’abord, nous mettons en évidence
les propriétés pertinentes des polynômes de Hermite. Les polynômes de Hermite normal-
isés unidimensionnels (hk(x))k≥0 forment une base orthonormale pour la mesure gaussi-
enne standard sur R. Les premiers polynômes sont donnés par h0(x) = 1, h1(x) = x,
h2(x) = 1√

2(x2−1), h3(x) = 1√
6(x3−3x). Ces polynômes sont étendus au cas multivarié

en définissant, pour α ∈ Nd,

Hα(x) =
d∏

a=1
hαa(xa).

Cette famille forme une base orthonormale pour l’espace de Hilbert des fonctions au carré
intégrable avec la distribution q, L2(q), où q(x) = e−∥x∥2/2/(2π)d/2 désigne la loi normale
standard sur Rd.

Dans ce contexte, si une fonction f ∈ L2(q) est exprimée comme f = ∑
α∈Nd f̂(α)Hα,

alors la fonction f ne dépend pas d’une variable xa si et seulement si tous les coefficients
f̂(α) pour α ∈ Nd tels que αa > 0 sont nuls.5 Ce motif particulier de parcimonie dans les
coefficients motive l’utilisation d’une pénalité de type LASSO groupé superposé (overlap-
ping group LASSO). Par conséquent, la base des polynômes de Hermite est bien adaptée
à la sélection de variables.

Pour ce faire, nous introduisons une pénalité induisant de la parcimonie, dépendant
des hyperparamètres r ∈ (0, +∞) et (ck)k∈N∗ (soit ck = 1k≤M , soit ck = ρk avec M ∈ N∗

et ρ ∈ (0, 1))

Ωvar(f) =

 d∑
a=1

 ∑
α∈(Nd)∗

αa
1

c|α|
f̂(α)2

r/2


1/r

,

où |α| = ∑d
a=1 αa. Cette pénalité encourage la parcimonie dans la dépendance de f aux

variables individuelles. La condition ∑
α∈(Nd)∗

αa
1

c|α|
f̂(α)2

r/2

= 0 ⇐⇒
∫
Rd

(
∂f

∂xa

)2
q = 0

met en évidence que la pénalité impose la nullité de la dérivée de f par rapport à xa.
Nous estimons f∗ dans le cadre de la sélection de variables en résolvant le problème
d’optimisation suivant

fλ,µ
var := arg min

f∈F
R̂(f) + λΩ2

0(f) + µΩr
var(f),

où λ est un paramètre fixé pour la pénalité induisant la régularité Ω0, µ est un hyper-
paramètre à choisir, et la perte définissant le risque est une perte convexe quelconque.
Lorsque r ≥ 1 et que la fonction de perte est convexe, la fonction objectif est fortement
convexe, garantissant un minimiseur global unique. Pour r < 1, typiquement utilisé en
pratique pour éviter les biais trop importants des méthodes de type LASSO, seul un
minimiseur local peut être trouvé.

La propriété d’invariance par rotation des polynômes de Hermite est centrale pour
étendre cette méthode à l’apprentissage des caractéristiques linéaires. Plus précisément,

5Ici, f̂(α) correspond aux coefficients dans la décomposition en polynômes de Hermite de f , et non à
l’estimateur de f∗.
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pour tout x, x′ ∈ Rd, tout k ∈ N, et toute matrice orthogonale R de taille d × d, nous
avons ∑

|α|=k

Hα(x)Hα(x′) =
∑

|α|=k

Hα(Rx)Hα(Rx′).

Cette propriété permet le développement d’une pénalité adaptée à l’apprentissage des
caractéristiques, définie comme suit

Ωfeat(f) =
(
tr
(
M

r/2
f

))1/r
,

où la matrice Mf est donnée par

(Mf )a,b =
∑

α∈Nd

1
c|α|+1

√
αa + 1

√
αb + 1f̂(α + ea)f̂(α + eb), a, b ∈ [d].

Encore une fois, il existe un lien entre la nullité des dérivées et la définition de la pénalité,
décrit dans le texte principal. La matrice Mf est semi-définie positive, et la pénalité
Ωfeat(f) encourage la parcimonie en poussant les valeurs propres de Mf vers zéro, favorisant
ainsi une solution de faible rang. Il est important de noter que c|α| dépend uniquement
de |α|, ce qui garantit que la pénalité reste invariante par rotation, un aspect crucial pour
éviter que la pénalité ne favorise des directions spécifiques.

La décomposition spectrale Mf = UDU⊤ révèle que si le rang de D est s, alors
la fonction f dépend uniquement de s combinaisons linéaires des variables originelles,
correspondant aux directions dans U avec des valeurs propres non nulles. En outre, on
peut construire une fonction pivotée g = f(U ·) telle que la pénalité des caractéristiques
sur f soit équivalente à la pénalité de sélection de variables sur g. Cela montre que
l’apprentissage des caractéristiques peut être vu comme une extension de la sélection de
variables permettant des rotations dans l’espace des caractéristiques.

L’estimateur de f∗ dans le cadre de l’apprentissage des caractéristiques est donc défini
de manière similaire à celui de la sélection de variables, en remplaçant Ωvar par Ωfeat.
Pour calculer l’estimateur, nous employons une formulation variationnelle pour Ωfeat(f)
qui reformule le problème comme la minimisation sur deux variables : la fonction f et une
variable auxiliaire Λ. Plus précisément, nous résolvons

fλ,µ
feat, Λλ,µ

feat = arg min
f∈F , Λ∈Rd×d

R̂(f) + λΩ2
0(f) + µtrace(Λ−1Mf ),

sous les contraintes que Λ = RDiag(η)R⊤ avec R une matrice orthogonale d × d et∑d
a=1 η

r/(2−r)
a = 1, avec η un vecteur positif. Le processus d’optimisation alterne en-

tre la mise à jour de Λ à f fixée par calcul de la décomposition spectrale de Mf , et la la
mise à jour de f à Λ fixée en résolvant un problème de régression ridge à noyau, avec le
noyau reproduisant kΛ défini grâce aux polynômes de Hermite

kΛ(x, x′) =
∑

α∈(Nd)∗

c|α|Hα(R⊤x)Hα(R⊤x′)
λ + µα⊤η−1 .

Cette procédure itérative peut être interprétée comme une rotation progressive des don-
nées pour découvrir et s’aligner avec les caractéristiques sous-jacentes tout en apprenant
simultanément la fonction de prédiction.

Étant donné que le noyau est défini comme une somme infinie sur les polynômes de
Hermite, un calcul direct est impossible. Nous approchons donc le noyau par échantillon-
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nage. Nous utilisons une technique d’échantillonnage adaptative où les coefficients α sont
tirés d’une distribution guidée par la variable auxiliaire η. Le processus d’optimisation
converge rapidement en pratique, typiquement en quelques itérations. La complexité d’une
itération est donnée par

O

(
nm′d + nd2

Polynômes de Hermite
+ d2(m′)2 + d3

Mf et sa décomposition
+ md

Échantillonnage
+ nm′ max(n, m′)

Ridge Kernel

)
,

où m est le nombre d’échantillons tirés pour α (et m′ le nombre d’échantillons uniques
obtenus). Cette complexité peut être substantielle, car m′ doit être suffisamment grand
pour garantir que la représentation du noyau soit précise.

Résultat principal. Le résultat statistique principal de ce chapitre est que l’estimateur
RegFeaL, sous des hypothèses minimales, atteint la convergence du risque attendu vers
le risque minimal avec une haute probabilité, malgré une sensibilité à la dimensionnalité
des données. Nous illustrons cela par un théorème informel dans le cas où les covariables
sont bornées et où la séquence de régularisation est choisie comme ck = ρk.
Théorème 2 (Informel). Supposons que les covariables X soient bornées, c’est-à-dire que
∥X∥2 ≤ R presque sûrement, et que la fonction de perte ℓ soit lipschitzienne avec une
constante G. Supposons que la véritable fonction de régression f∗ existe et appartienne
à L2(q). Le paramètre de régularisation λ est fixé à zéro, et µ est choisi en fonction de
paramètres connus du problème. Nous définissons la norme Ω(f) comme Ωfeat(f) + |f̂(0)|
ou Ωvar(f) + |f̂(0)|. Alors, pour tout δ ∈ (0, 1), avec une probabilité d’au moins 1 − δ, le
risque attendu R(fµ) de l’estimateur RegFeaL fµ satisfait

R(fµ) ≤ R(f∗) + Ω(f∗) · G√
n

√
1 + eR2/2

(1− ρ)d

(
16
√

π

2 + 4
√

2
√

log 2
δ

)
,

et la norme de l’estimateur est bornée par Ω(fµ) ≤ 2Ω(f∗).
Le Chapitre 3 présente ce résultat dans un cadre plus général, où les données ne sont

pas nécessairement bornées et où tout choix de la séquence d’hyperparamètres (ck)k>0
peut être considéré. Ce résultat informel met en évidence la sensibilité de la méthode à la
dimensionnalité d, en particulier en raison de la dépendance exponentielle introduite par
la base infinie des polynômes de Hermite, tout en maintenant une dépendance favorable
à la taille de l’échantillon. L’hypothèse sur la fonction vraie f∗ est modérée, étant donné
la grande généralité de l’espace fonctionnel considéré.

Analyse. Nous résumons les principales contributions et les enseignements tirés du
Chapitre 3.

• Utilisation des polynômes de Hermite : La méthode exploite l’orthogonalité et
l’invariance par rotation des polynômes de Hermite pour aligner efficacement les don-
nées avec leurs directions des caractéristiques. La structure des polynômes de Her-
mite est particulièrement bien adaptée à la sélection de variables et à l’apprentissage
des caractéristiques, car elle permet la définition d’une pénalité de type LASSO
groupé superposé (overlapping group LASSO) qui décrit la dépendance à quelques
variables ou projections linéaires. Par rapport à l’espace fonctionnel précédent du
Chapitre 2, la décomposition en polynômes de Hermite est avantageuse car elle
s’adapte naturellement aux fonctions qui dépendent d’un petit sous-ensemble de
variables ou de caractéristiques linéaires.
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• Résultats statistiques : La méthode offre des garanties statistiques sous des hy-
pothèses minimales, notamment par rapport à l’espace fonctionnel auquel appartient
la véritable fonction de prédiction. Cette large applicabilité est une force majeure.
Cependant, la dépendance à une base infinie introduit une dépendance exponentielle
à la dimensionnalité des données, ce qui pose des défis significatifs dans les contextes
de grande dimension où les modèles multi-index sont les plus pertinents. Bien que
des techniques de preuve alternatives puissent réduire cette dépendance, une telle
approche n’est pas encore évidente.

• Coût computationnel : Le recours à une base infinie de polynômes de Hermite
nécessite une méthode d’échantillonnage sophistiquée pour approximer le noyau à
chaque itération du processus d’optimisation. Bien que cette approche soit théorique-
ment fondée, elle est coûteuse sur le plan computationnel et limite l’utilisation pra-
tique de la méthode, en particulier dans les problèmes de grande dimension.

• Limitations de l’espace fonctionnel : L’espace de fonctions proposé, basé sur
les polynômes de Hermite, est bien adapté pour capturer les motifs de parcimonie
nécessaires à la sélection de variables et à l’apprentissage de caractéristiques linéaires.
Comparé aux RKHS envisagés dans le chapitre précédent, cet espace est réellement
compatible avec le modèle multi-index et la dépendance en un nombre limité de
variables, tout en étant plus large, ce qui permet des hypothèses plus modérées sur
la véritable fonction de régression f∗. Cependant, cette expansivité introduit égale-
ment des défis significatifs. La dépendance exponentielle à la dimensionnalité dans
les résultats statistiques, ainsi que la nécessité d’une méthode d’échantillonnage com-
plexe dans la procédure d’optimisation, suggèrent que d’autres espaces fonctionnels
pourraient être plus appropriés. Dans le chapitre suivant, nous considérons un autre
espace fonctionnel basé sur la fusion de réseaux de neurones à une couche cachée
de largeur infinie et des méthodes à noyaux. Bien que cet espace soit également in-
traitable sur le plan computationnel en raison de sa définition utilisant une intégrale,
il peut être approximé plus efficacement à l’aide de particules, offrant une alternative
plus simple à échantillonnage utilisé dans RegFeaL.

Intégration des Réseaux de Neurones et des Méthodes à Noyaux

Cette contribution correspond au contenu du Chapitre 4, disponible dans le preprint (en
cours de révision pour le Journal of Machine Learning Research) : Follain and Bach [2024a],
tandis que le code est disponible à https://github.com/BertilleFollain/BKerNN.

Méthode. Dans ce chapitre, nous introduisons une approche novatrice appelée Brown-
ian kernel neural network (BKerNN), qui fusionne les réseaux de neurones et les méth-
odes à noyaux. L’idée clé derrière BKerNN est la construction d’un espace fonctionnel
sur mesure inspiré par les réseaux de neurones à une seule couche cachée de largeur in-
finie, où la non-linéarité est remplacée par une fonction issue d’un espace de Hilbert à
noyau reproduisant (RKHS). Cet espace fonctionnel, noté F∞, permet à chaque fonction
d’être représentée comme une intégrale sur des combinaisons linéaires des caractéristiques
d’entrée, pondérées par une mesure de probabilité. Plus précisément, les fonctions de cet
espace prennent la forme

f(x) = c +
∫

Sd−1
gw(w⊤x) dµ(w),
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où c est une constante, w est un vecteur directionnel situé sur la sphère unité Sd−1 pour
une norme ∥·∥ donnée (soit ℓ1, soit ℓ2), gw est une fonction qui varie avec w et appartient à
un espace de Sobolev qui est également un RKHS H, et µ est une mesure de probabilité sur
la sphère. L’espace H contient des fonctions avec des dérivées faibles au carré intégrables,
garantissant un certain degré de régularité, et telles que g(0) = 0. Le produit scalaire
de H est défini par ⟨g, g̃⟩ =

∫
R g′g̃′, et son noyau reproduisant est donné par k(B)(a, b) =

(|a|+ |b|−|a−b|)/2 = min(|a|, |b|)1ab>0, également connu sous le nom de noyau Brownien.
En pratique, nous approchons cet espace de dimension infinie par une version de largeur

finie Fm, où l’intégrale est remplacée par une somme finie sur m particules (similaires aux
neurones dans un réseau de neurones). Ainsi, les fonctions dans Fm sont exprimées comme
suit

f(x) = c + 1
m

m∑
j=1

gj(w⊤
j x),

où (wj)j∈[m] sont les vecteurs directionnels, et (gj)j∈[m] sont les fonctions correspondantes
issues de l’espace H. Le processus d’apprentissage dans BKerNN est guidé par un terme
de régularisation qui contrôle la complexité de la fonction apprise. La régularisation de
base est définie comme suit

Ω0(f) =
∫

Sd−1
∥gw∥H dµ(w),

où ∥gw∥H mesure la rugosité de la fonction gw. Cette régularisation induit de la parci-
monie dans les représentations apprises en limitant le nombre de fonctions non nulles gw,
ce qui favorise indirectement la sélection de caractéristiques. Pour renforcer davantage la
capacité d’apprentissage des caractéristiques de BKerNN, d’autres termes de régulari-
sation peuvent être introduits. Par exemple, une pénalité sur les variables encourage le
modèle à dépendre de seulement quelques variables en pénalisant les normes des lignes de
la matrice de poids contenant les (wj)j∈[m]. Une pénalité pour les caractéristiques, quant à
elle, favorise l’apprentissage d’une représentation de faible rang en appliquant une pénalité
de norme nucléaire à la matrice des particules, encourageant la dépendance à seulement
quelques transformations linéaires des données.

L’objectif d’optimisation est de minimiser le risque empirique régularisé

f̂λ = arg min
f∈F

R̂(f) + λΩweights(f),

où λ est le paramètre de régularisation et Ωweights est l’une des pénalités considérées.
BKerNN peut être vue sous deux perspectives différentes : comme une méthode à

noyau et comme un réseau de neurones. Avec le point de vue des méthodes à noyaux, le
processus d’apprentissage consiste en une régression ridge à noyau avec un noyau appris
pendant l’entraînement. La matrice de noyau est définie comme suit

K = 1
m

m∑
j=1

K(wj),

où K(wj) est la matrice de noyau associée au noyau Brownien pour les données projetées
dans la direction wj .

Avec le point de vue des réseaux de neurones, BKerNN ressemble à un réseau de
neurones à une seule couche cachée où les poids de la couche d’entrée à la couche cachée
sont les vecteurs directionnels (wj)j∈[m], et les fonctions d’activation sont les fonctions
apprises (gj)j∈[m]. Contrairement aux réseaux de neurones traditionnels où les fonctions
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d’activation sont prédéfinies, BKerNN apprend directement les fonctions d’activation,
ajoutant ainsi de la flexibilité au modèle.

L’espace fonctionnel F∞ est plus large que l’espace des fonctions représentables par les
réseaux de neurones traditionnels à une seule couche cachée avec des activations ReLU.
Cela est visible grâce à une analyse de transformée de Fourier, indiquant que BKerNN
peut capturer une plus grande variété de fonctions. Cette puissance de représentation
élargie ne se traduit pas par une complexité d’optimisation accrue.

Le calcul de BKerNN repose sur une version adaptée du théorème de représentation,
qui fournit une formulation paramétrique pour la minimisation. Nous nous concentrons ici
sur la perte quadratique pour simplifier l’exposé et permettre des solutions en forme close.
Cependant, la méthode est généralisable à d’autres fonctions de perte en utilisant des
techniques basées sur le gradient. Le problème d’optimisation peut être formulé comme
suit

min
w1,...,wm∈Rd,c∈R,α∈Rn

1
2n
∥Y −Kα− c1n∥22 + λ

2 α⊤Kα + λΩweights(w1, . . . , wm),

où K est la matrice noyau définie par les poids (wj)j∈[m] (qui ne sont plus contraints
après reformulation) et α apparaît grâce au théorème de représentation. Le processus
d’optimisation alterne entre deux étapes : optimiser les coefficients α et l’intercept c en
gardant les poids (wj)j∈[m] fixes, puis optimiser les poids (wj)j∈[m] en utilisant une descente
de gradient proximal.

Lorsque les poids (wj)j∈[m] sont fixes, la matrice noyau K devient constante, per-
mettant de résoudre explicitement l’optimisation de α et c, comme dans un problème
classique de régression ridge à noyau. La complexité de cette étape est de O(n3 + n2d), ce
qui peut être coûteux pour des ensembles de données volumineux. Pour réduire ce coût,
des techniques telles que la méthode de Nyström peuvent être employées pour approximer
la matrice de noyau.

La deuxième étape consiste à optimiser les poids (wj)j∈[m] tout en gardant α et c fixes.
Cela est plus difficile, car la fonction objectif résultante G n’est pas convexe par rapport
aux poids et elle est seulement différentiable presque partout. Les poids sont donc mis à
jour en utilisant une descente de gradient proximal.

L’opérateur proximal dépend de la pénalité. Par exemple, la mise à jour pour la
pénalité de base Ω0 est donnée par

wj ← proxλγΩ

(
wj − γ

∂G

∂wj

)
où proxλγΩ(u) =

(
1− λγ

2m

1
∥u∥

)
+

u,

où γ est le pas, ajusté via une recherche linéaire avec retour en arrière pour garantir une
optimisation efficace. Chaque étape proximale est facile à calculer à l’aide des formules
explicites, avec des complexités allant de O(md) pour les pénalités de base et de variable,
à O(md min(m, d)) pour les pénalités sur les caractéristiques.

Le processus d’optimisation tire parti de l’homogénéité positive du noyau Brownien,
qui garantit le bon comportement de la dynamique d’optimisation . Les perspectives
théoriques issues des réseaux de neurones dans la limite de champ moyen (mean-field)
soutiennent la convergence, bien qu’une preuve formelle fasse défaut en raison de la non-
différentiabilité du noyau Brownien. En pratique, la procédure s’avère robuste, avec des
expériences confirmant son efficacité.

153



Résumé des Contributions

Résultat principal. Le théorème informel suivant fournit un aperçu des capacités de
généralisation de BKerNN en proposant une borne de haute probabilité sur le risque
attendu de l’estimateur.

Théorème 3 (Informel). Considérons l’estimateur BKerNN f̂λ avec la pénalité de base
Ω0. Supposons que la perte soit convexe et lipschitzienne avec une constante L, que la véri-
table fonction de régression f∗ appartienne à F∞ et que 1 +

√
∥X∥∗ soit sous-gaussienne

avec un proxy de variance σ2, où ∥ · ∥∗ est la norme duale de celle utilisée pour définir
la sphère Sd−1. Alors, avec λ choisi en fonction de paramètres connus du problème (in-
dépendant de Ω0(f∗)), avec une probabilité d’au moins 1 − δ, le risque attendu de f̂λ est
borné par

R(f̂λ) ≤ R(f∗) + Ω0(f∗)CL

(
1√
n

+ Gn + σ√
n

√
log 1

δ

)
,

où C est une constante universelle, et Gn désigne la complexité gaussienne de la classe de
fonctions avec Ω0 contrainte sous un certain seuil. La quantité Gn est en outre bornée, en
utilisant une autre constante universelle C ′, comme suit

Gn ≤ C ′ min

√d

n

√
log(n)

√
EX∥X∥∗,

1
n1/6 (log d)1/4

(
EX1...Xn

(
max
i∈[n]
∥Xi∥∗

)2)1/4
 .

La borne sur Gn est présentée sous deux formes : une borne dépendant de la dimension
et une borne indépendante de la dimension. La borne dépendant de la dimension évolue
bien avec la taille de l’échantillon et montre seulement une dépendance quadratique à
la racine de la dimension. En revanche, la borne indépendante de la dimension, bien
que moins favorable en termes de taille d’échantillon (n−1/6), dépend uniquement de la
dimension de manière logarithmique. Les termes dépendant de la distribution des données
ont également une dépendance raisonnable à la dimension.

Analyse. Nous résumons les contributions clés et les enseignements tirés du Chapitre 4.

• Fusion des forces : BKerNN fusionne efficacement certains des avantages des
méthodes à noyaux et des réseaux de neurones à une couche cachée de largeur infinie.
Pour ce faire, la fonction d’activation non linéaire traditionnelle est remplacée par
une fonction tirée d’un espace de Hilbert à noyau reproduisant, ce qui améliore le
pouvoir d’expression du modèle.

• Optimisation efficace : Le processus d’optimisation est simple et robuste par
rapport aux réseaux de neurones classiques, bénéficiant de l’homogénéité positive
du noyau Brownien. Cette propriété permet d’utiliser les idées tirées de l’analyse
des réseaux de neurones dans la limite de champ moyen, ce qui rend le processus
théoriquement fondé. L’approximation de l’espace de largeur infinie à l’aide de
particules est facile comparée au processus d’échantillonnage utilisé pour RegFeaL.

• Garanties de généralisation : L’analyse statistique fournit des bornes de haute
probabilité sur le risque attendu, montrant que BKerNN atteint des taux de con-
vergence compétitifs. Deux types de bornes sont fournis : une borne dépendant de
la dimension qui s’adapte bien à la taille de l’échantillon et une borne indépendante
de la dimension qui s’adapte moins favorablement à la taille de l’échantillon mais qui
dépend seulement de manière logarithmique de la dimension des données. Les hy-
pothèses légères sur la distribution des données et la spécification du modèle rendent
ces résultats largement applicables.
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• Performance pratique : Les expériences numériques confirment les résultats
théoriques, BKerNN surpassant souvent les méthodes classiques à noyaux et ri-
valisant favorablement avec les réseaux de neurones sur des ensembles de données
réels.

• Adaptabilité dans les modèles mal spécifiés : Si le modèle est mal spécifié
mais que le prédicteur de Bayes f∗ est lipschitzien, les réseaux de neurones avec
des activations ReLU et une norme de Banach bornée atteignent un taux de conver-
gence de O(n−1/(d+5)), tandis que les méthodes à noyaux atteignent O(n−1/(d+1)),
toutes deux limitées par la malédiction de la dimension. Dans les modèles mal
spécifiés sous le modèle multi-index où f∗ = g∗(P ⊤·), les méthodes basées sur les
RKHS ne parviennent pas à exploiter la réduction de dimensionnalité, ce qui en-
traîne des taux inchangés. Cependant, les réseaux de neurones peuvent s’adapter à
cette structure, produisant des taux qui dépendent de la dimension inférieure de P
plutôt que de d. BKerNN partage cette adaptabilité, comme l’indique le fait que
Ω0(f∗) ≤ Ω0(g∗), ce qui, avec ses garanties théoriques solides dans les modèles bien
spécifiés et ses excellentes performances pratiques, souligne son importance dans
le domaine de l’apprentissage supervisé non-paramétrique avec des caractéristiques
linéaires cachées.

Cela conclut le résumé des contributions proposé en français. Le Chapitre 1 (correspon-
dant à l’introduction) décrit le contexte et les enjeux dans lesquels s’inscrivent cette thèse.
Chaque contribution est présentée en détail dans les Chapitres 2, 3 et 4. La Conclusion
présente des perspectives liées à ce travail.
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MOTS CLÉS

apprentissage de caractéristiques, noyau reproduisant, minimisation du risque empirique régularisé, parci-
monie, apprentissage supervisé, réseaux de neurones

RÉSUMÉ

Nous considérons le problème de l’apprentissage supervisé lorsqu’il existe des structures de données cachées, en nous
concentrant sur les cas où quelques caractéristiques linéaires pertinentes expliquent la relation entre la réponse et les
covariables, comme dans le modèle “multi-index”. Notre objectif est de développer des méthodes qui exploitent ces
structures cachées pour améliorer l’apprentissage. De nombreuses approches existantes reposent sur des hypothèses
fortes concernant la génération de données et se heurtent à la malédiction de la dimensionnalité, présentant souvent
une dépendance exponentielle en la dimension des données. Nous explorons les modèles “multi-index” en utilisant la
minimisation du risque empirique régularisé (ERM), car ce cadre flexible est applicable à tout problème pour lequel un
risque peut être défini. Tout au long de cette thèse, nous explorons trois méthodes innovantes pour simultanément
apprendre les caractéristiques et estimer la fonction de prédiction dans un contexte non-paramétrique. Chaque méthode
intègre des éléments des espaces de Hilbert à noyau reproduisant (RKHS), contient des pénalités d’apprentissage des
caractéristiques qui sont adaptables à la sélection de variables, utilise des procédures d’optimisation basées sur la
repondération pour un calcul efficace et s’appuie sur des hypothèses limitées sur le mécanisme de génération des
données. Nous avons veillé à la facilité d’utilisation du code développé et à la reproductibilité des expériences. La
première méthode, KTNGRAD, considère l’ERM dans un RKHS avec une pénalité de norme nucléaire sur la matrice
empirique des gradients. L’analyse théorique montre que KTNGRAD a des taux de convergence pour le risque attendu
dans les contextes bien spécifiés qui ne dépendent pas exponentiellement de la dimension, tout en estimant l’espace des
caractéristiques pertinentes d’une manière sûre. La deuxième méthode, REGFEAL, exploite les propriétés d’orthogonalité
et d’invariance par rotation des polynômes de Hermite. Cette méthode fait pivoter les données de manière itérative pour
les aligner avec les caractériques. Le risque attendu converge vers le risque minimal avec des taux explicites, sans
hypothèses fortes sur la véritable fonction de régression. Enfin, la troisième méthode, BKERNN, introduit un nouveau
modèle qui combine les méthodes à noyaux et les réseaux de neurones. Cette méthode optimise les poids de la première
couche par descente de gradient tout en ajustant explicitement la non-linéarité et les poids de la deuxième couche.
L’optimisation tire parti de l’homogénéité positive du noyau Brownien, et l’analyse de la complexité de Rademacher montre
que le risque attendu de BKERNN atteint des taux de convergence favorables qui sont indépendants de la dimension,
sans hypothèses fortes sur la véritable fonction de régression ou sur les données.

ABSTRACT

We tackle the challenge of supervised learning with hidden data structures, focusing on cases where a few relevant linear
features explain the relationship between response and covariates, as in the multi-index model. We aim to develop meth-
ods that leverage these hidden structures to improve learning. Many existing approaches rely on strong assumptions
about data generation and struggle with the curse of dimensionality, often exhibiting exponential dependency on data di-
mension. We explore multi-index models through regularised empirical risk minimisation (ERM), as this flexible framework
is applicable to any problem where a risk can be defined. Throughout this thesis, we explore three innovative methods
for joint feature learning and function estimation in nonparametric learning. Each method integrates elements from re-
producing kernel Hilbert spaces (RKHS), contains sparsity-inducing penalties for feature learning which are adaptable to
the variable selection setting, uses optimisation procedures based on reweighting for efficient computation and relies on
limited assumptions on the data-generating mechanism. We ensured the usability of the developed code and the repro-
ducibility of the experiments. The first method, KTNGRAD, considers ERM within an RKHS, augmented by a trace norm
penalty on the sample matrix of gradients. Theoretical analysis shows that KTNGRAD achieves convergence rates that do
not depend exponentially on the dimension for the expected risk in well-specified settings while recovering the underlying
feature space in a safe-filter manner. The second method, REGFEAL, leverages Hermite polynomials’ orthogonality and
rotation invariance properties. This method iteratively rotates the data to align with leading directions. The expected risk
converges to the minimal risk with explicit rates without strong assumptions on the true regression function. Finally, the
third method, BKERNN, introduces a novel framework that combines kernel methods and neural networks. This method
optimises the first layer’s weights via gradient descent while explicitly adjusting the non-linearity and weights of the second
layer. The optimisation leverages the positive homogeneity of the Brownian kernel, and Rademacher complexity analysis
shows that BKERNN achieves favourable convergence rates that are dimension-independent without strong assumptions
on the true regression function or the data.

KEYWORDS

feature learning, reproducing kernel, regularised empirical risk minimisation, sparsity, supervised learning,
neural networks
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