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Abstract

We propose a new method for feature learning and function estimation in supervised learn-
ing via regularised empirical risk minimisation. Our approach considers functions as expec-
tations of Sobolev functions over all possible one-dimensional projections of the data. This
framework is similar to kernel ridge regression, where the kernel is Ew(k

(B)(w⊤x,w⊤x′)),
with k(B)(a, b) := min(|a|, |b|)1ab>0 the Brownian kernel, and the distribution of the pro-
jections w is learnt. This can also be viewed as an infinite-width one-hidden layer neural
network, optimising the first layer’s weights through gradient descent and explicitly ad-
justing the non-linearity and weights of the second layer. We introduce a gradient-based
computational method for the estimator, called Brownian Kernel Neural Network
(BKerNN), using particles to approximate the expectation, where the positive homogene-
ity of the Brownian kernel leads to improved robustness to local minima. Using Rademacher
complexity, we show that BKerNN’s expected risk converges to the minimal risk with
explicit high-probability rates of O(min((d/n)1/2, n−1/6)) (up to logarithmic factors). Nu-
merical experiments confirm our optimisation intuitions, and BKerNN outperforms kernel
ridge regression, and favourably compares to a one-hidden layer neural network with ReLU
activations in various settings and real data sets.

Keywords: feature learning, neural network, reproducing kernel Hilbert space, regu-
larised empirical risk minimisation, Rademacher complexity

1 Introduction

In the era of high-dimensional data, effective feature selection methods are crucial. Repre-
sentation learning aims to automate this process, extracting meaningful information from
complex data sets. Non-parametric methods often struggle in high-dimensional settings,
making the multi-index model, which assumes a few relevant linear features explain the
relationship between response and factors, an attractive alternative. Formally, the multiple
index model (Xia, 2008) is expressed as Y = f∗(X) + noise = g∗(P⊤X) + noise, with Y
the response, X the d-dimensional covariates, g∗ the unknown link function, P ∈ Rd×k the
features and k ≤ d, the number of such relevant linear features. The components P⊤X
are linear features of the data that need to be learnt, reducing the dimensionality of the
problem, which may allow to escape the curse of dimensionality, while the more general
function g increases the capacity of the model.
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Multiple index models have been extensively studied, leading to various methods for
estimating the feature space. Brillinger (2012) introduced the method of moments for Gaus-
sian data and one feature, by using specific moments to eliminate the unknown function.
For features of any dimension, several methods have been proposed. Sliced inverse regres-
sion (SIR) (Li, 1991) uses second-order moments to identify effective dimensions by slicing
the response variable and finding linear combinations of predictors, while improvements
have been proposed (Yang et al., 2017), these methods heavily rely on assumptions about
the covariate distribution shape and prior knowledge of the distribution. Iterative improve-
ments have been an interesting line of work (Dalalyan et al., 2008), while optimisation-based
methods like local averaging minimise an objective function to estimate the subspace (Fuku-
mizu et al., 2009; Xia et al., 2002). Despite their practical performance, particularly the
MAVE method (Xia et al., 2002), the theoretical guarantees show exponential dependence
on the original data dimension, making them less suitable for high-dimensional settings.
More recently, neural networks have also been applied to this problem, as demonstrated by
Mousavi-Hosseini et al. (2024) and Bietti et al. (2023) (for the single-index model), who
both focused on the continuous limit of the optimisation process. Furthermore, Bach (2017)
has shown that one-hidden-layer neural networks of infinite width with ReLU activation are
adaptive to hidden linear features. Unlike earlier methods, these neural network approaches
simultaneously learn both the feature space and the prediction function, a key difference
from the other presented methods. Extensions have also been proposed to tackle non-linear
feature learning as in the introductory work by Moniri et al. (2024).

In this work, we tackle feature learning and function estimation jointly through the
paradigm of empirical risk minimisation. We consider a classical supervised learning prob-
lem. We have i.i.d. samples (xi, yi)i∈[n] from a random variable (X,Y ) ∈ X × Y ⊂ Rd × R.
Our goal is to minimise the expected risk, which is defined as R(f) := EX,Y [ℓ(Y, f(X))]
over some class of functions F , where ℓ is a loss function mapping from R × R to R. This
can be achieved through the framework of regularised empirical risk minimisation, where
the empirical risk is defined as R̂(f) := 1

n

∑n
i=1 ℓ(yi, f(xi)). Our interest in regularised em-

pirical risk minimisation stems from its flexibility, allowing it to be applied to a wide range
of problems as long as the objective can be defined as the optimisation of an expected loss.
Our primary objective is to achieve the lowest possible risk, which we study in theory and
in practice, while we explore the recovery of underlying features in numerical experiments.
Our method draws inspiration from several lines of work, namely positive definite kernels
and neural networks with their mean field limit, which we briefly review, together with the
main limitations we aim to alleviate.

Kernel methods and multiple kernel learning. A well-known method in supervised
learning is kernel ridge regression (KRR, Vovk, 2013), which implicitly maps data into high-
dimensional feature spaces using kernels. It benefits from dimension-independent rates of
convergence if the model is well-specified, i.e., if the target function belongs to the related
Hilbert space. However, KRR does not benefit from the existence of linear features in terms
of convergence rates of the risk when the model is misspecified (Bach, 2024, Section 9.3.5),
as it relies on pre-specified features. To address the limitations of single-kernel methods,
multiple kernel learning (MKL) optimally combines multiple kernels to capture different
data aspects (Bach et al., 2004; Gönen and Alpaydın, 2011). However, MKL suffers from
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significant computational complexity and the critical choice of base kernels, which can in-
troduce biases if not selected properly. Furthermore, MKL does not resolve the issue of
leveraging hidden linear features effectively.

Neural networks. Now consider another type of supervised learning methods, namely
neural networks with an input layer of size d, a hidden layer with m neurons, an activation
function σ, followed by an output layer of size 1. Functions which can be represented are of
the form f(x) =

∑m
j=1 ηjσ(w

⊤
j x + bj), where σ can be the ReLU, σ(z) = max(0, z) or the

step function σ(z) = 1z>0. Neural networks benefit from hidden linear features, achieving
favourable rates dependent on k, the number of relevant features, rather than on the data
dimension (Bach, 2024, Section 9.3.5). However, this formulation requires multiple b values
to fit a function with the same w, particularly in single-index models f∗(x) = g∗(w⊤x),
which is inefficient.

Regularising the empirical risk minimization objective with a penalty term helps guide
estimator behaviour (towards few relevant features for example) and can often be inter-
preted as a form of function space regularisation. Recent advances in norm-based capacity
measures in neural networks have deepened the understanding of how such regularisation
influences generalisation. In particular, the path norm, originally introduced for ReLU net-
works, provides strong generalization guarantees due to its scale-invariant properties (Liu
et al., 2024). This notion has been refined through the basis-path norm, which disentangles
independent basis paths, offering a more precise characterization of neural network com-
plexity (Zheng et al., 2018). Building on these ideas, Parhi and Nowak (2020) extend the
analysis from a variational perspective, linking path norm regularisation to Banach space
representations of neural networks, while Galanti et al. (2023) focus on norm-based bounds
for sparse networks.

Now, in the specific context of feature learning (and not necessarily neural networks),
Rosasco et al. (2013) used derivatives for regularisation in nonparametric models, focusing
on variable selection. While their method reduces to classical regularisation techniques for
linear functions, it faces limitations: functions depending on a single variable do not belong
in the chosen RKHS, using derivatives at data points limits the exploitation of regularity,
and there is no benefit from hidden variables in the misspecified case. An improvement
over this method was studied for both feature learning and variable selection by Follain and
Bach (2024), where a trace norm penalty (Koltchinskii et al., 2011; Giraud, 2014) on the
derivatives was used for the feature learning case. However, the dependency on the dimension
of the rate did not allow high-dimensional learning. We can justify the use of trace norm
penalties by considering the structure of neural networks. Under the multiple-index model,
the weights w1, . . . , wm of the first layer are expected to lie in a low-rank subspace of rank
at most k. However, directly enforcing a rank constraint is not practical for optimisation.
Therefore, we could use a relaxation such as Ω(f) = tr

((∑m
j=1wjw

⊤
j

)1/2), which is the trace
norm of a matrix containing the weights, to approximate the rank constraint effectively.
However, there is still the issue of multiple constant terms (often referred to as “biases”) for
a single weight. We will see specialised penalties for feature learning for a different family
of functions.

Mean-field limit. To apply a similar framework to our future estimator, we introduce
the mean-field limit of an over-parameterised one-hidden layer neural network (Nitanda and
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Suzuki, 2017; Mei et al., 2019; Chizat and Bach, 2022; Sirignano and Spiliopoulos, 2020).
When the number of neurons m is very large, the network can be rescaled as follows

f(x) =
1

m

m∑
j=1

ηjσ(w
⊤
j x+ bj), which approximates

∫
ησ(w⊤x+ b) dµ(η, w, b), (1)

where µ is a probability distribution, and we can take the weights and constant terms (w, b)
to be constrained when the activation is 1-homogeneous,1 such as the ReLU or step func-
tion. This approach is valuable because, as noted by Chizat and Bach (2022), under certain
conditions (convexity of the loss and penalty functions, homogeneity of the activation func-
tion), the regularised empirical risk problem optimised via gradient descent in the infinitely
small step-size limit converges to the minimiser of the corresponding problem with infinitely
many particles. This allows us to use a finite number of particles m in practice while still
leveraging the theoretical benefits derived from the continuous framework.

1.1 Plan of the Paper and Notations

In this paper, we introduce the Brownian kernel neural network (BKerNN), a novel model
for feature learning and function estimation. Our approach combines kernel methods and
neural networks using regularised empirical risk minimisation. Section 2 presents the theo-
retical foundations and formulation of BKerNN. Section 3 details the practical implemen-
tation, including the optimisation algorithm and convergence insights. Section 4 provides
a statistical analysis using Rademacher complexity to show high-probability convergence to
the minimal risk with explicit rates. Section 5 evaluates BKerNN through experiments
on simulated and real data sets, comparing it with neural networks and kernel methods.
Finally, Section 6 summarises the findings and suggests future research directions.

We use the following notations. For a positive integer m, we define [m] := {1, . . . ,m}.
For a d-dimensional vector α and i ∈ [d], αi denotes its i-th element. For a matrix A, trA
denotes its trace when A is square, A−1 its inverse when well defined, while Ai,j the element
in its i-th row and j-th column, and A⊤ its transpose. Id is the d× d identity matrix. We
use Sd−1 to denote the unit sphere in Rd for ∥ · ∥ a generic norm and ∥ · ∥∗ its dual norm.
The ℓ2, ℓ1, and ℓ∞ norms are denoted as ∥ · ∥2, ∥ · ∥1, and ∥ · ∥∞ respectively. We use O(·)
to denote the asymptotic behaviour of functions, indicating the order of growth. The set
of probability measures on a given space S is denoted by P(S). A normal random variable
is denoted as following the law N (mean, variance). 1 is the indicator function. For two
spaces S1, S2, SS2

1 is the set of functions from S2 to S1.

2 Neural Networks and Kernel Methods Fusion

Building on the limitations of current methods discussed in the introduction, we propose a
novel architecture that integrates neural networks with kernel methods. This approach can
be interpreted in two ways: as learning with a kernel that is itself learned during training,
or as employing a one-hidden layer neural network where the weights from the input layer to
the hidden layer are learned through gradient descent, while the weights and non-linearity

1. A function Φ is positively 1-homogeneous if, for any κ > 0, Φ(κw) = κΦ(w).
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from the hidden layer to the output are optimised explicitly. In this section, we introduce
the custom function space we propose, revisit key properties of reproducing kernel Hilbert
spaces (RKHS), and explore the connections between BKerNN model, kernel methods, and
neural networks. Additionally, we present the various regularisation penalties we consider
throughout our analysis.

2.1 Custom Space of Functions

We begin by considering the continuous setting, which mirrors the mean-field limit of over-
parameterised one-hidden layer neural networks discussed in Section 1.

Definition 1 (Infinite-Width Function Space) Let

F∞ :=

{
f | f(·) = c+

∫
H×Sd−1

g(w⊤·)dµ(g, w), Ω0(f) <∞
}
,

where c is a constant in R, Sd−1 is the unit sphere for some norm ∥ · ∥ on Rd (typically
either ℓ2 or ℓ1), H is a space of functions, and µ is a probability measure on H×Sd−1. We
define H as {g : R→ R | g(0) = 0, g has a weak derivative g′,

∫
R(g

′)2 <∞}. H is a Hilbert
space and a Sobolev space, with the inner product defined as ⟨g̃, g⟩H =

∫
g̃′g′. We define Ω0

as the infimum over all measures which can be used to define f , i.e.

Ω0(f) := inf
µ∈P(H×Sd−1)

∫
H×Sd−1

∥g∥H dµ(g, w), (2)

with the infimum over µ such that f = c+
∫
H×Sd−1 g(w

⊤·) dµ(g, w), where ∥g∥2H :=
∫ +∞
−∞ (g′)2.

Note that c corresponds to the value of the function f evaluated at the null vector and is
therefore unique, which is not necessarily the case of the measure µ. F∞ is well-defined
using a “variation norm” on couples (g, w) integrated w.r.t a Borel measure on H × Sd−1.
This is the variation norm associated to the map (g, w) ∈ H × Sd−1 → g(w⊤·) (which is a
function from Rd to R, see Kurkova and Sanguineti (2001) and Bach (2024, Section 9.3.2).

The function space F∞ is inspired by infinite-width single hidden layer neural networks:
with the addition of the intercept c, each function in this space can be seen as the integral of
a linear part w and a non-linearity g over some probability distribution, as in Equation (1)
where the non-linearity is ησ(·). Thus here the activation functions are learnt.

The approximation of F∞ with m particles can then be obtained as follows.

Definition 2 (Finite-Width Function Space) Let

Fm :=

f | f(·) = c+
1

m

m∑
j=1

gj(w
⊤
j ·), wj ∈ Sd−1, gj ∈ H, c ∈ R

 .

Remark that ∀m ∈ N∗,Fm ⊂ F∞, by taking the discrete probability measure uniformly
supported by the particles w1, . . . , wm.

We now consider regularised empirical risk minimisation starting with the basic penalty Ω0.
This penalty enforces the regularity of the function and, because we use penalisation with
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non-squared norms, limits the cardinality of the support of µ on the space H. While this
penalty is not specifically aimed at feature learning, by limiting the number of non-zero
particles, it indirectly promotes feature learning to some extent. This serves as a start-
ing point, and we introduce more targeted penalties in Section 2.5 with a stronger fea-
ture learning behaviour. For f ∈ Fm written as in Definition 2, the penalty simplifies to
Ω0(f) =

1
m

∑m
j=1 ∥gj∥H. The learning objective is thus defined as

f̂λ := argmin
f∈F

R̂(f) + λΩ(f), (3)

where λ > 0 is a regularisation parameter and Ω is currently Ω0 from Equation (2). The
function space F is either F∞ or Fm. For statistical analysis in Section 4, we consider F∞,
while in practice, we compute the estimator using Fm as discussed in Section 3. The rationale
for using Fm and expecting the statistical properties of F∞ is elaborated in Section 3.2.

In the continuous setting, Equation (3) corresponds to

min
c∈R,µ∈P(H×Sd−1)

1

n

n∑
i=1

ℓ

(
yi, c+

∫
H×Sd−1

g(w⊤xi)dµ(g, w)

)
+ λ

∫
H×Sd−1

∥g∥Hdµ(g, w), (4)

while in the m-particles setting, Equation (3) becomes

min
c∈R,w1,...,wm∈Sd−1,g1,...,gm∈H

1

n

n∑
i=1

ℓ

(
yi, c+

1

m

m∑
j=1

gj(w
⊤
j xi)

)
+ λ

1

m

m∑
j=1

∥gj∥H, (5)

where we clearly see a sparsity-inducing “grouped” penalty (Yuan and Lin, 2006).

2.2 Properties of Reproducing Kernel Hilbert Space H and Kernel k

In this subsection, we succinctly present some properties of reproducing kernel Hilbert spaces
(RKHS) that are essential for our analysis. See Aronszajn (1950); Berlinet and Thomas-
Agnan (2011) for an introduction to RKHS. Recall that we defined the Hilbert space H
as

H :=

{
g : R→ R | g(0) = 0,

∫
R
(g′)2 < +∞

}
,

with the inner product ⟨g̃, g⟩H =
∫
R g̃′g′. This space is a reproducing kernel Hilbert space

with the reproducing kernel k(B)(a, b) = (|a| + |b| − |a − b|)/2 = min(|a|, |b|)1ab>0. This
kernel, which can be referred to as the “Brownian” kernel, corresponds to the covariance of
the Brownian motion at times a and b (Mishura and Shevchenko, 2017). To see that k(B) is
the reproducing kernel of H, it suffices to check that we have the reproducing property, i.e.
that

∀g ∈ H,∀a ∈ R, g(a) = ⟨g, k(B)
a ⟩H,

where k
(B)
a : b ∈ R → k(B)(a, b) ∈ R.2 As a reproducing kernel, it is positive definite,

meaning that for any n ∈ N, α ∈ Rn, and a ∈ Rn, we have
∑n

i,j=1 αik
(B)(ai, aj)αj ≥ 0.

2. Indeed, we have for g ∈ H, and without loss of generality a ∈ R+ that ⟨g, k(B)
a ⟩H =

∫
R g

′(b)(k
(B)
a )′(b) db =∫ a

0
g′(b) db = g(a)− g(0) = g(a)

6
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Additionally, we observe that ∥k(B)
a ∥2H = ⟨k(B)

a , k
(B)
a ⟩ = k(B)(a, a) = |a| and we can obtain

∥k(B)
a − k

(B)
b ∥

2
H = |a − b| in a similar manner. It is also noteworthy that by definition, the

functions in H are necessarily continuous, in fact even 1/2-Hölder continuous as we see in
Lemma 3.

The usual Hilbert/Sobolev space is W 1,2(R) (also written as H1) with inner product
equal to ⟨f, g⟩ =

∫
fg +

∫
f ′g′. This space is also an RKHS for the reproducing kernel

kexp(a, b) = exp(−|a− b|) (see, e.g., Williams and Rasmussen, 2006). We demonstrate that
for optimisation purposes, the Brownian kernel is more advantageous due to its positive
homogeneity in Section 3.2.

2.3 Characterisation of F∞

In this subsection, we discuss the properties of the function space F∞ and its relationship
to other relevant spaces, such as the space of functions of one-hidden-layer neural networks
presented in Section 1. We first present the following lemma.

Lemma 3 (Properties of Functions in F∞) F∞ is a vector space and max(f(0),Ω0(f))
is a norm on F∞. For f ∈ F∞, the function f is 1/2-Hölder continuous with constant Ω0(f),
i.e., |f(x)− f(x′)| ≤ Ω0(f)

√
∥x− x′∥∗.

The proof can be found in Appendix A.1.1. This lemma indicates that the space of
functions F∞ is contained within the space of 1/2-Hölder continuous functions. Recall that
on a compact, all Lipschitz functions are Hölder continuous functions, indicating that the
Hölder condition is less restrictive.

Now, we consider the relationship of F∞ to other function spaces. Starting with the
one-dimensional case, BKerNN reduces to kernel ridge regression with the Brownian ker-
nel, which is also equivalent to learning with natural cubic splines (for an introduction to
splines, see Wahba, 1990). Thus, in dimension one, we can compare precisely our func-
tion space (square-integrable derivative), to the function space associated with neural net-
works (Heeringa et al., 2024, Theorem 1), with rectified linear units (integrable second-
derivative), and with sign activation function (integrable first-derivative).

For multi-dimensional data, we use the Fourier decomposition of functions to bound the
defining norms of function spaces, enabling us to make comparisons.

Lemma 4 (Functions Spaces Included in F∞) We consider a function f with support
on the ball centred at 0 with radius R and norm ∥ · ∥∗ (Note that we do not assume that
f ∈ F∞). Assume f has a Fourier transform and can be written using the inverse transform3

as
f(x) =

1

(2π)d

∫
Rd

f̂(ω)eiω
⊤x dω,

then, it follows that

Ω0(f) ≤
√
2R

(2π)d

∫
Rd

|f̂(ω)| · ∥ω∥ dω.

Hence, if
∫
Rd |f̂(ω)| · ∥ω∥ dω <∞, then f belongs to F∞.

3. A sufficient condition is that both f and f̂ belong to L1(Rd).

7
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The proof is given in Appendix A.1.2. We remark that the condition
∫
Rd |f̂(ω)| ·∥ω∥ dω <∞

is a form of constraint on the regularity of the first-order derivatives (as the Fourier transform
of the gradient of f is equal to iω times the Fourier transform of f).

According to Bach (2024, Section 9.3.4), the space of one-hidden-layer neural networks
with ReLU activations in the mean-field limit with ∥w∥2 = 1, |b| ≤ R can be equipped with
the Banach norm γ1(f) =

∫
|η|dµ(η, w, b), which can be then bounded as in Lemma 4 by

2

(2π)dR

∫
Rd

|f̂(ω)|(1 + 2R2∥ω∥22) dω. (6)

Now remark that the bound on Ω0 contains a factor ∥ω∥ in the integral, whereas for ReLU
neural networks with γ1 norm it is 1 + 2R2∥ω∥22. Hence, the constraint is stronger on the
neural network space space, no matter what norm ∥ · ∥ corresponds to, suggesting that F∞
is a larger space of functions.

Also note that the bound from Equation (6) can be shown to be smaller (up to a constant)
than the norm defining the Sobolev space penalising derivatives up to order s := d/2+ 5/2,
which is

∫
Rd |f̂(ω)|2(1 + 2R2∥ω∥22)s dω. (Bach, 2024, Section 9.3.5). This space is an RKHS

because s > d/2, and the inequality on norms yields that the space of neural networks with
ReLU activations equipped with the norm γ1 (which is a Banach space) contains this RKHS.
Another interesting remark is that if we used the norm γ2(f) =

∫
η2dµ(η, w, b) instead of γ1,

the space that we would obtain is an RKHS and is strictly included in the one defined by γ1
(Bach, 2024, Section 9.5.1)

For neural networks with step activations, i.e., σ(z) = 1z>0 in the mean-field limit, a
similar bound holds for the γ1 norm

1

(2π)d

∫
Rd

|f̂(ω)|(1 +R∥ω∥2) dω. (7)

This can be seen by applying the same proof technique as for Equation (6) from Bach (2024,
Section 9.3.4)4. Learning with this space is not practically feasible due to optimisation issues
as the step function is incompatible with gradient descent methods. However, the bound
from Equation (7) is similar to the one on Ω0, hinting that F∞ is comparably large even
though learning is possible with F∞, as discussed in Section 3. For a discussion on this
topic, see Bach (2024, Chapter 9) and Liu et al. (2024).

2.4 Learning the Kernel or Training a Neural Network?

We first transform the optimisation problem before considering our setup from two differ-
ent perspectives: one through kernel learning and the other through neural networks. To
transform the optimisation problem, we use the representer theorem, a well-known result in
RKHS theory that allows us to replace the optimisation over functions in the RKHS with
optimisation over a finite weighted sum of the kernel at the data points.

4. The only difference being that we use eiu∥w∥2 = 1 +
∫ R

0
i∥w∥2eit∥w∥21t≤udt instead of Taylor’s formula,

yielding γ1(x → eiω
⊤x) ≤ 1 +R∥w∥2.

8
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Lemma 5 (Kernel Formulation of Finite-Width) Equation (5) is equivalent to

min
w1,...,wm∈Rd,c∈R,α∈Rn

1

n

n∑
i=1

ℓ(yi, (Kα)i + c) +
λ

2
α⊤Kα+

λ

2

1

m

m∑
j=1

∥wj∥, (8)

where K = 1
m

∑m
j=1K

(wj), and K(wj) ∈ Rn×n is the kernel matrix for kernel k(B) and

projected data (w⊤
j x1, . . . , w

⊤
j xn), i.e., K(wj)

i,i′ = (|w⊤
j xi|+ |w⊤

j xi′ |− |w⊤
j (xi−xi′)|)/2. Notice

that there are no constraints on the particles (wj)j∈[m] to belong to the unit sphere anymore.

The proof is provided in Appendix A.2.1. This lemma shows that we only need to solve
a problem over finite-dimensional quantities. For computational complexity considerations,
see Section 3.1. We can view Equation (8) using kernels. In a classical kernel supervised
learning problem with an unregularised intercept, we would have a fixed kernel matrix K
and consider

min
c∈R,α∈Rn

1

n

n∑
i=1

ℓ(yi, (Kα)i + c) +
λ

2
α⊤Kα.

For infinitely many particles, the analogue of Lemma 5 is Lemma 6.

Lemma 6 (Kernel Formulation of Infinite-Width) Equation (4) is equivalent to:

min
ν∈P(Rd),c∈R,α∈Rn

1

n

n∑
i=1

ℓ(yi, (Kα)i + c) +
λ

2
α⊤Kα+

λ

2

∫
Rd

∥w∥ dν(w), (9)

with K =
∫
Rd K

(w) dν(w) and and K(w) ∈ Rn×n is the kernel matrix for kernel k(B) and
data (w⊤x1, . . . , w

⊤xn).

Notice that there is a shift in spaces, as ν is a probability distribution on Rd, whereas µ
was a probability distribution on H× Sd−1. The proof is provided in Appendix A.2.2.

In summary, we aim to perform multiple kernel learning with a kernel parametrized by
a probability measure (Lemma 6), and approximate it using particles (Lemma 5).

2.4.1 Kernel Perspective

Lemma 5 shows that we are solving a regularised kernel ridge regression problem where the
kernel 1

m

∑m
j=1(|w⊤

j x|+ |w⊤
j x

′|−|w⊤
j (x−x′)|)/2 is also learnt through the weights (wj)j∈[m],

and the third term λ
2

1
m

∑m
j=1 ∥wj∥ serves as a penalty to improve kernel learning.

The homogeneity of the kernel k(B) leads to well-behaved optimisation, as we discuss
in Section 3.2 and see in Experiment 1 in Section 5.2. The kernel matrix K is indeed
positively 1-homogeneous in the particles (wj)j∈[m]. If we had chosen H to be the RKHS
corresponding to the exponential kernel (or the Gaussian kernel), we would have faced
the challenge of learning the kernel

∑m
j=1 e

−|w⊤
j (x−x′)|, which exhibits a complex and non-

homogeneous dependency on the weights (wj)j∈[m]. By using the Brownian kernel instead of
the exponential kernel, we only slightly change the regularisation, regularising with

∫
R(g

′)2

instead of
∫
R g2 +

∫
R(g

′)2 while making the optimisation more tractable.

9
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Compared to multiple kernel learning, BKerNN offers notable advantages. Multiple
kernel learning (MKL) involves combining several predefined kernels, which is prone to over-
fitting as the number of kernels increases. Additionally, selecting the optimal kernel com-
bination is challenging and often requires sophisticated algorithms. In contrast, BKerNN
adapts the kernel through the learned weights (wj)j∈[m], making the optimisation process
simpler and more efficient, as discussed in Section 3.

2.4.2 Neural Network Perspective

Our architecture can also be interpreted as a special type of neural network with one hidden
layer. Recall that F∞ is inspired by neural networks as it involves linear components w
followed by a non-linear part. In neural networks, this non-linear part is typically ησ(·),
which we replaced with g(·) ∈ H in our setting. The functions in Fm are expressed similarly
with the number of particles m equivalent to the number of neurons in the hidden layer.

As we discuss in Section 3.1, we learn the weights (wj)j∈[m] through gradient descent,
while the functions (gj)j∈[m] are learned explicitly, leveraging a closed-form solution. This
approach resonates with the work of Marion and Berthier (2023) and Bietti et al. (2023).
Marion and Berthier (2023) examine a one-hidden layer neural network where the step-sizes
for the inner layer are much smaller than those for the outer layer. They prove that the
gradient flow converges to the optimum of the non-convex optimisation problem in a simple
univariate setting and that the number of neurons does not need to be asymptotically large,
which is a stronger result than the usual study of mean-field regimes or neural tangent
kernel. Bietti et al. (2023) consider learning the link function in a non-parametric way
infinitely faster than the low-rank projection subspace, which resonates with our method,
although they focus on Gaussian data.

We have also established that the function space F∞ is more extensive than the space of
neural networks with ReLU activations in Section 2.3. In Section 3.2, we demonstrate that
this enlargement is compatible with efficient optimisation.

2.5 Other Penalties

We now present other penalties designed to achieve different effects. The three terms in
Equation (8) correspond to the empirical risk, the standard penalty from KRR on the RKHS
norm of the function, and an extra regularisation term on the learnt kernel weights. This
additional term, λ

2m

∑m
j=1 ∥wj∥, originates from the penalty Ω0(f) in Equation (2). However,

we can explore other penalties on w1, . . . , wm that induce various additional sparsity effects,
even if they do not directly correspond to penalties on f ∈ Fm. Let W ∈ Rd×m be the matrix
with (w1, . . . , wm) as columns, denote by W (a) the a-th row of W , and let W = USV ⊤ be
its singular value decomposition, with S a diagonal matrix composed of S1, . . . , Smin(m,d).
Recall that ν is a probability distribution on Rd.

1. Basic penalty: Ωbasic(w1, . . . , wm) = 1
2m

∑m
j=1 ∥wj∥, which we discussed in Sec-

tion 2.1. In the continuous setting, it corresponds to 1
2

∫
Rd ∥w∥dν(w). This penalty,

which does not target any specific pattern in the data-generating mechanism, is the
one for which we provide theoretical results in Section 4. However, it does not work
as well in practice as the following penalties.
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2. Variable penalty: Ωvariable(w1, . . . , wm) = 1
2

∑d
a=1

(
1
m

∑m
j=1(wj)

2
a

)1/2, which is also

equal to 1
2
√
m

∑min(m,d)
a=1 ∥W (a)∥2. This penalty, inspired by the group Lasso (Yuan

and Lin, 2006), is designed for variable selection, pushing quantities ∥W (a)∥2 towards
zero, thus encouraging dependence on a few variables. In the continuous setting, it
corresponds to 1

2

∑min(m,d)
a=1

( ∫
Rd |wa|2dν(w)

)1/2.
3. Feature penalty: Ωfeature(w1, . . . , wm) = 1

2 tr
((

1
m

∑m
j=1wjw

⊤
j

)1/2), which is also

equal to 1
2

∑min(m,d)
a=1

Sa√
m

and to the nuclear norm of W divided by 2
√
m. It is

used for feature learning as it is a convex relaxation of the rank, encouraging W
to have low rank and thus dependence on only a few linear transformations of the
data. Regularisation using the nuclear norm in the context of feature learning is well-
established in the literature, as demonstrated by Argyriou et al. (2008). It corresponds
to 1

2 tr
(( ∫

Rd ww
⊤dν(w)

)1/2) in the continuous setting.

4. Concave variable penalty: The concave version of the penalty for variable selection,
Ωconcave variable(w1, . . . , wm) = 1

2s

∑d
a=1 log

(
1 + s√

m
∥W (a)∥2

)
, with s ≥ 0. The appeal

of the added concavity is discussed below. In the continuous setting, it corresponds to
1
2s

∑d
a=1 log

(
1 + s

∫
Rd(wa)

2dν(w)
)1/2).

5. Concave feature penalty: The concave version of the penalty intended for fea-
ture learning, Ωconcave feature(w1, . . . , wm) = 1

2s

∑min(m,d)
a=1 log

(
1 + s√

m
Sa

)
for feature

selection, with s ≥ 0. The appeal of the added concavity is discussed below. In the
continuous setting it corresponds to 1

2s

∑d
a=1 log

(
1 + s

(( ∫
Rd ww

⊤dν(w)
)1/2)

a,a

)
.

The first penalty is convex in both ν and W , making it straightforward to optimise. The
second and third penalties, while not convex in ν, are convex in W due to the presence
of squared and square root terms on the components of W , easing optimisation in the m
particles setting. The fourth and fifth penalties are neither convex in ν nor W , instead,
they are concave in W . As s approaches zero, these penalties revert to their non-concave
versions. Convex penalties, while easier to handle, can be detrimental by diminishing rele-
vant variables or features to achieve sparsity. Mitigating this effect can involve retraining
with the selected variables/features or employing concave penalties, which is the choice we
made here. Although concave penalties are more complex to analyse, they often yield better
performance because they drive the solution towards the boundary, promoting sparsity (Fan
and Li, 2001; Bach et al., 2012). We discuss the impact of the choice of regularisation in
Experiment 3 in Section 5.3.

Note that the link with infinite-dimensional normed function spaces and the theoretical
analysis of Section 4. only applies to the first “basic” penalty. Extending the analysis of
concave penalties from finite dimension (Fan and Li, 2001; Zhang, 2010) to infinite dimension
remains an open problem.
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3 Computing the Estimator

In this section, we detail the process of computing the estimator for each of the penalties
presented in Section 2.5. We then discuss the importance of the homogeneity of the Brownian
kernel and how the optimisation with particles relates to the continuous setting.

3.1 Optimisation Procedure

In this section, we focus on the square loss ℓ(y, y′) = 1
2(y − y′)2, which allows for explicit

computations. However, the method can be extended to other loss functions using gradient-
based techniques, (see Bach, 2024, Chapter 5). Recalling Equation (8) and the penalties
described in Section 2.5, the optimisation problem we aim to solve is

min
w1,...,wm∈Rd,c∈R,α∈Rn

1

2n
∥Y −Kα− c1n∥22 +

λ

2
α⊤Kα+ λΩweights(w1, . . . , wm), (10)

where K = 1
m

∑m
j=1K

(wj) and Ωweights represents any of the penalties from Section 2.5.
To solve this problem, we alternate between exact minimisation with respect to α and c,

which is done in closed-form, and one improvement step for the minimisation with respect
to w1, . . . , wm which is done using one step of proximal gradient descent. This corresponds
to minimizing with respect to the w1, . . . , wm the infimum with respect to c and α.

3.1.1 Fixed Particles w1, . . . , wm

When the weights w1, . . . , wm are fixed, the kernel matrix K is also fixed, allowing us to
find the solution for the constant c and the coefficients α in closed-form. By centring both
the kernel matrix and the response Y , we transform the problem into a classical kernel ridge
regression problem, for which explicit solutions are well-known.

Lemma 7 (Optimisation for Fixed Particles) For fixed w1, . . . , wm and hence a fixed K,
define

G(w1, . . . , wm) := min
α∈Rn,c∈R

1

2n
∥Y −Kα− c1n∥22 +

λ

2
α⊤Kα.

The optimisation problem defining G is solved by

α = (K̃ + nλI)−1Ỹ and c =
1⊤Y

n
− 1⊤Kα

n
,

where K̃ := ΠKΠ and Ỹ := Y − 11⊤Y
n , with Π = I − 11⊤

n being the centring matrix. The
objective value is then

G(w1, . . . , wm) =
λ

2
Ỹ ⊤(K̃ + λnI)−1Ỹ .

The proof is provided in Appendix A.3.1. Lemma 7 allows us to optimise α and c
explicitly during the optimisation process. The complexity of this step is O(n3 + n2d),
which can be challenging when the sample size n is large, a common drawback of kernel
methods. However, techniques like the Nyström method (Drineas and Mahoney, 2005),
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which approximates the kernel matrix, can help mitigate this issue. Alternatively, we could
use gradient descent techniques, but as shown in Marion and Berthier (2023), it may be
beneficial to learn the weights from the hidden layer to the output layer (corresponding to
learning g1, . . . , gm and hence α) with a much larger step-size than the weights from the
input layer to the hidden layer (corresponding to learning w1, . . . , wm). Learning α and c
explicitly represents the limit of this two-timescale regime.

3.1.2 Proximal Step to Optimise the Weights w1, . . . , wm

Next, we focus on optimising w1, . . . , wm while keeping c and α fixed. The goal is to solve

min
w1,...,wm∈Rd

G(w1, . . . , wm) + λΩweights(w1, . . . , wm), (11)

where the dependence on (wj)j∈[m] in the first term is through the kernel matrix K. Note
that G is convex in K but not in w1, . . . , wm. Additionally, G is differentiable almost every-
where, except where w⊤

j (xi − xi′) for some j ∈ [m], i ̸= i′ ∈ [n]. However, standard practice
assumes that these non-differentiabilities average out with many data points. Meanwhile,
the penalties Ωweights are not differentiable at certain fixed points, independently of the
data, similarly to the Lasso penalty. Therefore, we use proximal gradient descent to solve
Equation (11). With a step-size γ > 0, this involves minimising

m∑
j=1

∂G

∂wj
(wold)⊤(wj − wold

j ) +
1

2γ

m∑
j=1

∥wj − wold
j ∥22 + λΩweights(w1, . . . , wm),

over w1, . . . , wm ∈ Rd. This corresponds to the simultaneous proximal gradient descent steps
wj ← proxλγΩ(wj − γ ∂G

∂wj
). We therefore compute the gradient and the proximal operator.

For the gradient, we have the following lemma.

Lemma 8 (Gradient of G) Let j ∈ [m], then

∂G

∂wj
=

λ

4

1

m

n∑
i,i′=1

zizi′ sign(w
⊤
j (xi − xi′))(xi − xi′),

where z = (K̃ + nλI)−1Ỹ .

The proof is in Appendix A.3.2. Note that G is not differentiable around 0, which is also
the case of common activation functions in neural networks such as the ReLU, but this is
not an issue in practice.

Next, we compute the proximal operator for the described penalties. Recall the definition
of the proximal operator

proxΩ(W ) = argmin
(u1,...,um)∈Rd×m

1

2

m∑
j=1

∥wj − uj∥22 +Ω(u1, . . . , um).

We use W ∈ Rd×m and (w1, . . . , wm) interchangeably, with W = USV ⊤ (SVD). We denote
the rows of W by W (a) as before. The following lemma provides the proximal operators.

13



B. FOLLAIN and F. BACH

Lemma 9 (Proximal Operators) We describe the proximal operators.

1. For Ωbasic(W ) = 1
2m

∑m
j=1 ∥wj∥, then

(
proxλγΩ(W )

)
j
=
(
1− λγ

2m
1

∥wj∥
)
+
wj.

2. For Ωvariable(W ) = 1
2
√
m

∑d
a=1 ∥W (a)∥2, (proxλγΩ(W ))(a) =

(
1− λγ

2
√
m

1
∥W (a)∥2

)
+
W (a).

3. For Ωfeature(W ) = 1
2trace

((
1
m

∑m
j=1wjw

⊤
j

)1/2), then we have proxλγΩ(W ) = US̃V ⊤

with S̃ =
(
1− λγ

2
√
m|S|

)
+
S.

4. For Ωconcave variable(W ) = 1
2s

∑d
a=1 log

(
1 + s√

m
∥W (a)∥2

)
, then with c obtained from

(∥W (a)∥2)a∈[d] by an explicit (albeit lengthy) formula (proxλγΩ(W ))(a) = cW (a).

5. For Ωconcave feature(W ) = 1
2s

∑d
a=1 log

(
1 + s√

m
Sa

)
, then with c which obtained from S

by an explicit (albeit lengthy) formula proxλγΩ(W ) = US̃V ⊤ with S̃ = cS.

The proof is in Appendix A.3.3. Each proximal step is easy to compute using the explicit
formulas above, with complexities O(md) for the basic, variable, and concave variable cases,
and O(mdmin(m, d)) for the feature and concave feature cases, due to the SVD computation.

3.1.3 Algorithm Pseudocode

We now have all the components necessary to provide the pseudocode (Algorithm 1) of
the proposed method BKerNN, specifically for the square loss. For other losses, the main
difference is that α and c might not be solvable in closed-form and would need to be computed
through alternative methods such as gradient descent.

Data: X,Y,m, λ, γ,Ωweights

Result: w1, . . . , wm, c, α

W = (w1, . . . , wm) ∈ Rd×m ←
(
N (0, 1/d)

)d×m;
for i ∈ [niter] do

Compute K;
α← (K̃ + nλI)−1Ỹ , c← 1⊤Y

n − 1⊤

n Kα;
Compute ∂G

∂W ;
γ ← γ × 1.5;
while G(proxλγΩ(W − γ ∂G

∂W ) > G(W )− γ ∂G
∂W ·Gγ(W ) + γ

2∥Gγ(W )∥22 do
γ ← γ/2;

end
W ← proxλγΩ(W − γ ∂G

∂W );
end

Algorithm 1: BKerNN pseudocode.

To select the step-size γ for the proximal gradient descent step appropriately, we use a
backtracking line search, assuming G is locally Lipschitz. Starting with the previous step-
size, we multiply it by 1.5. If the backtracking condition is not satisfied, we divide γ by 2
and repeat. The backtracking condition is that G(proxλγΩ(W − γ ∂G

∂W )) should be smaller
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than G(W )− γ ∂G
∂W ·Gγ(W ) + γ

2∥Gγ(W )∥22, where Gγ(W ) =
(
W − proxλγΩ(W − γ ∂G

∂W )
)
/γ.

This method was taken from Beck (2017).
With the outputted w1, . . . , wm, c, and α from the algorithm, the estimator is the func-

tion f̂λ defined as f̂λ(x) = c +
∑n

i=1 αi
∑m

j=1
1
m(|w⊤

j xi| + |w⊤
j x| − |w⊤

j (x − xi)|)/2. This
formulation enables us to perform predictions on new data points and facilitates the extrac-
tion of meaningful linear features through the learned weights (wj)j∈[m]. Remark that we
do not take into account the optimisation error in the rest of the paper.

3.2 Convergence Guarantees on Optimisation Procedure

In this section, we discuss the convergence properties of the optimisation procedure. Al-
though we do not provide a formal proof due to differentiability issues, we highlight the
importance of the homogeneity of the Brownian kernel and present arguments suggesting
the robustness of the optimisation process. However, no formal results are presented because
of the lack of differentiability.

We aim to apply the insights from Chizat and Bach (2022) and Chizat and Bach (2018),
which state that under certain assumptions, in the limit of infinitely many particles and an
infinitely small step-size, gradient descent optimisation converges to the global optimum of
the infinitely-many particles problem. Key assumptions include convexity with respect to
the probability distribution in the and homogeneity of a specific quantity Ψ, which we define
below. We reformulate our problem in line with Chizat and Bach (2022).

Considering the square loss with the basic penalty Ωbasic, the optimisation problem
with m particles from Equation (10) can be rewritten as

min
w1,...,wm∈Rd

{
inf

α∈Rn,c∈R

1

2n
∥Y −Kα− c1n∥22 +

λ

2
α⊤Kα+

λ

2m

m∑
j=1

∥wj∥
}

= min
w1,...,wm∈Rd

{
λ

2
Ỹ ⊤(K̃ + λnI

)−1
Ỹ +

λ

2m

m∑
j=1

∥wj∥
}
,

where K = 1
m

∑m
j=1K

(wj) is the final kernel matrix, K(w) ∈ Rn×n is the kernel matrix for
kernel k(B) with projected data (w⊤x1, . . . , w

⊤xn), Π = In − 1n1
⊤
n is the centring matrix,

while Ỹ = ΠY is the centred output, and K̃ = ΠKΠ is the centred kernel matrix. We solve
this using proximal gradient descent. For the continuous case, the problem is

min
ν∈P(Rd)

(
inf

α∈Rn,c∈R

1

2n
∥Y −Kα− c1n∥22 +

λ

2
α⊤Kα+

λ

2

∫
Rd

∥w∥dν(w)
)

= min
ν∈P(Rd)

(
λ

2
Ỹ ⊤(K̃ + λnI

)−1
Ỹ +

λ

2

∫
Rd

∥w∥ dν(w)
)
,

where K =
∫
Rd K

(w) dν(w) and ν is a probability measure on Rd.
In both cases we minimise F (ν) (defined right below) over P(Rd) for the continuous case

and over Pm(Rd), which is the set of probability distributions anchored at m points on Rd,
in the m-particles case. F is defined as

F (ν) := Q

(∫
Rd

Ψ(w) dν(w)

)
,
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where Q : Rn×n × R→ R, Q(K, c′) = λ
2 Ỹ

⊤(K̃ + λnI
)−1

Ỹ + λ
2 c

′, and Ψ : Rd → Rn×n × R,
Ψ(w) = (K(w), ∥w∥). Note that Ψ is indeed positively 1-homogeneous, as the necessary
condition ∀w ∈ Rd,∀κ > 0, Ψ(κw) = κΨ(w) is verified. Moreover, Q is convex in ν,
indicating the optimisation is well-posed (while we perform computations for the square
loss, we would also obtain a convex function for any convex loss).

Our method employs proximal gradient descent instead of basic gradient descent, which is
acceptable as both methods approximate the differential equation arising in the infinitesimal
step-size limit. Gradient descent is an explicit method, whereas proximal gradient descent
combines implicit and explicit updates (Süli and Mayers, 2003). Moreover, it allows to deal
efficiently with the non-smoothness of the sparsity-inducing penalties (no additional cost
and improved convergence behaviour).

While our framework aligns with that of Chizat and Bach (2022), we cannot directly
apply their results due to the non-differentiability of Ψ around zero, a common issue in
such analyses. Despite this, our setup meets the crucial assumptions of convexity in Q and
the homogeneity of Ψ. See Experiment 1 in Section 5.2 for a numerical evaluation of the
practical significance of the homogeneity assumption. Obtaining formal results despite the
lack of differentiability remains an open problem.

4 Statistical Analysis

In this section our objective is to obtain high-probability bounds on the expected risk of
the BKerNN estimator to understand its generalisation capabilities. To achieve this, we
bound the Gaussian complexity (a similar concept to the Rademacher complexity,) of the
sets {f ∈ F∞ | max(f(0),Ω0(f)) ≤ D} for D > 0. Recall that F∞ is defined in Definition 1.
We begin by introducing the Gaussian complexity in Definition 10, followed by Lemma 11,
which is used to simplify the quantities for subsequent bounding. We then bound the
Gaussian complexities using two distinct techniques in Sections 4.1.1 and 4.1.2. The first
technique yields a dimension-dependent bound with better complexity in sample size, while
the second provides a dimension-independent bound. Finally, in Section 4.2, we derive the
high-probability bound on the expected risk of BKerNN with explicit rates for data with
subgaussian square-rooted norm, using an extension of McDiarmid’s inequality from Meir
and Zhang (2003), before detailing the data-dependent quantities of the rates. All of these
results require few assumptions on the problem, and on the data-generating mechanism in
particular.

While our method resembles multiple kernel learning, the theoretical results from MKL,
which are often related to Rademacher chaos (e.g., Lanckriet et al., 2004; Ying and Camp-
bell, 2010) are not directly applicable. This is because, in our approach, the learned weights
are multi-dimensional and embedded within the kernel, rather than being simple scalar
weights used to combine predefined kernels. Thus, the unique structure of our model re-
quires different theoretical considerations.
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4.1 Gaussian Complexity

Recall that the estimator BKerNN is defined as

f̂λ := argmin
f∈F

1

n

n∑
i=1

ℓ(yi, f(xi)) + λΩ(f)

where F is Fm := {f | f(x) = c + 1
m

∑m
j=1 gj(w

⊤
j x), wj ∈ Sd−1, gj ∈ H, c ∈ R} in practice

for optimisation and F∞ := {f | f(x) = c+
∫
H×Sd−1 g(w

⊤x) dµ(g, w), µ ∈ P(H×Sd−1), c ∈
R,Ω0(f) <∞} for statistical analysis. Although we considered various penalties in Sec-
tion 2.5, here we focus on f ∈ F∞ with Ω(f) = max(Ω0(f), c), where Ω0(f) was defined
as

Ω0(f) = inf
µ∈P(H×Sd−1)

∫
H×Sd−1

∥g∥H dµ(g, w),

such that f(·) = c+
∫
H×Sd−1 g(w

⊤·)dµ(g, w) and corresponds to the basic penalty for Ωweights.
This is made possible through a well-defined mean-field limit; we leave the other penalties
for future work.

We now introduce the concept of Gaussian complexity (for more details, see Bartlett
and Mendelson, 2002).

Definition 10 (Gaussian Complexity) The Gaussian complexity of a set of functions G
is defined as

Gn(G) := Eε,Dn

(
sup
f∈G

1

n

n∑
i=1

εif(xi)

)
,

with ε a centred Gaussian vector with identity covariance matrix, and Dn := (x1, . . . , xn) is
the data set consisting of i.i.d. samples drawn from the distribution of the random variable X.
Note that it only contains the covariates, not the response.

We aim to bound Gn({f ∈ F∞ | Ω(f) ≤ D}) for some D > 0. The discussion on
the Gaussian complexity of the space F∞ would yield the same bounds if Fm were consid-
ered instead. However, since we demonstrated in Section 3.2 that optimisation in Fm and
optimisation in F∞ are closely related, we focus exclusively on F∞ in this section.

First, we note that we can study the Gaussian complexity of a simpler class of functions,
as indicated by the following lemma, which allows us to deal with the constant and remove
the integral present in the definition of F∞.

Lemma 11 (Simplification of Gaussian Complexity) Let D > 0. Then,

Gn({f ∈ F∞ | Ω(f) ≤ D}) ≤ D

(
1√
n
+Gn

)
,

with Gn := Gn({f | f(·) = g(w⊤·), ∥g∥H ≤ 1, w ∈ Sd−1}).

The proof can be found in Appendix A.4.1. We now need to bound Gn, which we ap-
proach in two different ways. First, in Section 4.1.1, we use covering balls on the sphere
Sd−1, resulting in a dimension-dependent bound. Then, in Section 4.1.2, we approximate
functions in F∞ by Lipschitz functions, before using a covering argument, leading to a
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dimension-independent bound at the cost of worst dependency in the sample size n. With
these bounds on Gn, we will derive results on the expected risk of the BKerNN estima-
tor, providing explicit rates depending on the upper bounds of Gn, without exponential
dependence on dimension.

4.1.1 Dimension-Dependent Bound

First, we note that the supremum over the functions g with ∥g∥H ≤ 1 can be obtained in
closed-form (see Lemma 18 in Appendix A.4.2). This reduces the problem to considering
the expectation of a supremum over the sphere, which we address using a covering of Sd−1.

Theorem 12 (Dimension-Dependent Bound) We have

Gn ≤ 8

√
d

n

√
log(n+ 1)

√
EX∥X∥∗,

where ∥ · ∥∗ is the dual norm of ∥ · ∥. Recall that ∥ · ∥ defines the sphere Sd−1.

The bound on the Gaussian complexity obtained here is dimension-dependent due to
the covering of the unit ball in Rd, but it has a favourable dependency on the sample size.
For ease of exposition, we have replaced the original factor

√
log(1 + n/(2d)) + 1/(2d) + 1

with 8
√

log(n+ 1). Recall that ∥ · ∥∗ = ∥ · ∥2 for the ℓ2 sphere and ∥ · ∥∗ = ∥ · ∥∞ for the
ℓ1 sphere. Note that the dependency on the data distribution is explicit and can be easily
bounded in different data-generating mechanisms, as discussed in Lemma 17 at the end of
Section 4.
Proof [Proof of Theorem 12] First, recall the definition of Gn

Gn = Eε,Dn

(
sup

f=g(w⊤·),∥g∥H≤1,w∈Sd−1

1

n

n∑
i=1

εif(xi)

)
,

which we can rewrite as

Gn = Eε,Dn

(
sup

∥g∥H≤1,w∈Sd−1

1

n

n∑
i=1

εig(w
⊤xi)

)
,

and finally by splitting the supremum as everything is finite

Gn = Eε,Dn

(
sup

w∈Sd−1

sup
∥g∥H≤1

1

n

n∑
i=1

εig(w
⊤xi)

)
.

Using Lemma 18, we then have

Gn = Eε,Dn

(
sup

w∈Sd−1

√
ε⊤K(w)ε

n

)
,

where K(w) is the kernel matrix for the Brownian kernel with data (w⊤x1, . . . , w
⊤xn).

We bound the supremum inside of the expectation using covering balls. Let M ∈ N∗

and WM be such that ∀w ∈ Sd−1,∃w̃ ∈ WM ⊂ Sd−1 such that ∥w− w̃∥ ≤ ζ, i.e., we have a
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ζ-covering of the sphere with its own norm in d dimensions, with M the covering number.
Fix w ∈ Sd−1 and w̃ such that ∥w − w̃∥ ≤ ζ. We then have

|
√
ε⊤K(w)ε−

√
ε⊤K(w̃)ε| =

∣∣∣∣∣
∥∥∥∥ n∑

i=1

εikw⊤xi

∥∥∥∥
H
−
∥∥∥∥ n∑

i=1

εikw̃⊤xi

∥∥∥∥
H

∣∣∣∣∣
≤
∥∥∥∥ n∑

i=1

εi(kw⊤xi
− kw̃⊤xi

)

∥∥∥∥
H
≤

n∑
i=1

|εi| · ∥kw⊤xi
− kw̃⊤xi

∥H

=
n∑

i=1

|εi|
√
|w⊤xi − w̃⊤xi| ≤

n∑
i=1

|εi|
√
∥w − w̃∥∥xi∥∗

≤
√
∥w − w̃∥

n∑
i=1

|εi|
√
∥xi∥∗ ≤ ζ1/2

n∑
i=1

|εi|
√
∥xi∥∗.

Next, we get√
ε⊤K(w)ε =

√
ε⊤K(w̃)ε+

√
ε⊤K(w)ε−

√
ε⊤K(w̃)ε ≤

√
ε⊤K(w̃)ε+ ζ1/2

n∑
i=1

|εi|
√
∥xi∥∗.

Taking the supremum and dividing by the sample size n,

sup
w∈Sd−1

√
ε⊤K(w)ε

n
≤ sup

w̃∈WM

√
ε⊤K(w̃)ε

n
+ ζ1/2

n∑
i=1

|εi|
√
∥xi∥∗. (12)

Considering the expectation over ε of Equation (12), we get

Eε

(
sup

w∈Sd−1

√
ε⊤K(w)ε

n

)
≤ Eε

(
sup

w̃∈WM

√
ε⊤K(w̃)ε

n

)
+ ζ1/2Eε

(
1

n

n∑
i=1

|εi|
√
∥xi∥∗

)
.

We now handle Eε

(
supw̃∈WM

√
ε⊤K(w̃)ε

n

)
using standard concentration tools for supre-

mum of infinitely many random variables. Consider t > 0, then

Eε

(
sup

w̃∈WM

√
ε⊤K(w̃)ε

)
≤

√√√√Eε

(
sup

w̃∈WM

ε⊤K(w̃)ε

)

≤

√
1

t
log

(
Eε

(
et supw̃∈WM ε⊤K(w̃)ε

))

=

√√√√1

t
log

(
Eε

(
sup

w̃∈WM

etε⊤K(w̃)ε

))

≤

√√√√1

t
log

(
Eε

( ∑
w̃∈WM

etε⊤K(w̃)ε

))

=

√√√√1

t
log

( ∑
w̃∈WM

Eε

(
etε⊤K(w̃)ε

))
.
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Fix w̃ ∈ WM and consider Eε

(
etε

⊤K(w̃)ε
)
. Diagonalising K(w̃) to Uw̃Dw̃U

⊤
w̃ , we have that

U⊤
w̃ ε is still a Gaussian vector with identity covariance matrix. When t is small enough, i.e.,
∀i ∈ [n], 2t(Dw̃)i < 1, or t < 1

2maxi(Dw̃)i
,

Eε

(
etε

⊤K(w̃)ε
)
= Eε

(
et

∑n
i=1(Dw̃)iε

2
i

)
=

n∏
i=1

Eε(e
t(Dw̃)iε

2
i )

=
n∏

i=1

∫
R

1√
2π

e(t(Dw̃)i−1/2)ε2i dεi

=
n∏

i=1

∫
R

1√
2π

e(2t(Dw̃)i−1)
ε2i
2 dεi =

n∏
i=1

(1− 2t(Dw̃)i)
−1/2.

Re-injecting this, we obtain

log
(
Eε

(
etε

⊤K(w̃)ε
))

= log

(
n∏

i=1

(1− 2t(Dw̃)i)
−1/2

)

≤ −1
2

n∑
i=1

log(1− 2t(Dw̃)i).

To bound this further, take t ≤ 1
4max((Dw̃)i)

, which implies both 2t(Dw̃)i < 1/2 and − log(1−
2t(Dw̃)i) ≤ 4t(Dw̃)i, leading to

log
(
Eε

(
etε

⊤K(w̃)ε
))
≤ 2t

n∑
i=1

(Dw̃)i ≤ 2t tr(K(w̃)) ≤ 2t
n∑

i=1

∥xi∥∗.

Taking t ≤ minw̃∈WM
1

4max((Dw̃)i)
, we obtain

Eε

(
sup

w̃∈WM

√
ε⊤K(w̃)ε

n

)
≤ 1

n

√
1

t
log
(
Me2t

∑n
i=1 ∥xi∥∗

)
≤ 1

n

√√√√1

t

(
logM + 2t

n∑
i=1

∥xi∥∗
)
.

Let us first check that t = 1
4
∑n

i=1 ∥xi∥∗ , fulfils the previously required conditions. This is
equivalent to showing that we have for any w̃ ∈ WM ,maxi∈[n](Dw̃)i ≤

∑n
i=1 ∥xi∥∗. First,

maxi∈[n](Dw̃)i is the largest eigenvalue of K(w̃), hence it is smaller than the trace of K(w̃).
We also know that this trace is equal to

∑n
i=1 |w̃⊤xi|. Now since ∥w̃∥ = 1, this means that∑n

i=1 |w̃⊤xi| ≤
∑n

i=1 ∥xi∥∗. Thus by taking this t, we get

Eε

(
sup

w̃∈WM

√
ε⊤K(w̃)ε

n

)
≤ 1√

n

√∑n
i=1 ∥xi∥∗

n

√
4 logM + 2.
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In the end, we obtain

Eε

(
sup

w∈Sd−1

√
ε⊤K(w)ε

n

)
≤ 1√

n

√∑n
i=1 ∥xi∥∗

n

√
4 logM + 2 + ζ1/2

√∑n
i=1 ∥xi∥∗

n
,

where we have used Eε|εi| ≤
√

Eε(εi)2 = 1 and
∑n

i=1

√
∥xi∥∗

n ≤
√∑n

i=1 ∥xi∥∗
n .

We know that M ≤ (1 + 2/ζ)d (Wainwright, 2019, Lemma 5.7), yielding

Eε

(
sup

w∈Sd−1

√
ε⊤K(w)ε

n

)
≤
√∑n

i=1 ∥xi∥∗
n


√
4d log(1 + 2

ζ ) + 2
√
n

+ ζ1/2


≤
√∑n

i=1 ∥xi∥∗
n

(√
4d log(1 + n

2d) + 2
√
n

+

√
4d

n

)

≤ 2

√∑n
i=1 ∥xi∥∗

n

√
d√
n

(√
log
(
1 +

n

2d

)
+

1

2d
+ 1

)

≤ 4

√∑n
i=1 ∥xi∥∗

n

√
d√
n

(√
log
(
1 +

n

2d

)
+ 1

)
≤ 8

√∑n
i=1 ∥xi∥∗

n

√
d√
n

√
log(n+ 1),

where to get the second line, we took ζ = 4d/n. By taking the expectation over the data
set Dn, since EDn

(√
n−1

∑n
i=1 ∥xi∥∗

)
≤
√

E(∥X∥∗), we have the desired result.

4.1.2 Dimension-Independent Bound

We now bound the Gaussian complexity with a quantity that does not explicitly depend on
the dimension of the data. Recall that we aim to bound

Gn = Eε,Dn

(
sup

∥g∥H≤1,w∈Sd−1

1

n

n∑
i=1

εig(w
⊤xi)

)
,

where ε is a centred Gaussian vector with an identity covariance matrix. First, recall
that the functions in H with norm bounded by 1 are not Lipschitz functions but are instead
1/2-Hölder functions (Lemma 3). Specifically, let g ∈ H, ∥g∥H ≤ 1, then for any a, b ∈ R,
we have |g(a)− g(b)| ≤ ∥ka − kb∥H =

√
|a− b|.

An interesting result for a fixed 1-Lipschitz function h is that we can apply the contraction
principle (Bach, 2024, Proposition 4.3) to the Rademacher complexity. Informally, this yields

Eε

(
sup

w∈Sd−1

1

n

n∑
i=1

εih(w
⊤xi)

)
≤ Eε

(
sup

w∈Sd−1

1

n

n∑
i=1

εiw
⊤xi

)
,

where exceptionally ε is composed of independent Rademacher variables. The supremum
in the second term can then be taken explicitly. We will make use of this idea by first
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approximating the functions in the unit ball of H with Lipschitz functions, before using
Slepian’s lemma (Ledoux and Talagrand, 1991, Corollary 3.14) to obtain similar results on
the Gaussian complexity.

Lemma 13 (Lipschitz Approximation) Let g ∈ H with ∥g∥H ≤ 1, and let ζ > 0. There
exists a (1/ζ)-Lipschitz function gζ : R→ R with gζ(0) = 0 such that ∥g − gζ∥∞ ≤ ζ.

The proof can be found in Appendix A.4.3. This lemma indicates that we can approximate
functions in the unit ball of the RKHSH up to any precision in the infinite norm by Lipschitz
functions with a Lipschitz constant equal to the inverse of the precision.

Theorem 14 (Dimension-Independent Bound) If Sd−1 is the ℓ1 or the ℓ2 sphere, then

Gn ≤
6

n1/6

(
(log 2d)1/41∗=∞ + 1∗=2

)(
EDn

(
max
i∈[n]

(∥Xi∥∗)2
))1/4

.

Recall that in the ℓ1 sphere case, ∥·∥∗ = ∥·∥∞, and in the ℓ2 case ∥·∥∗ = ∥·∥2. Here, we obtain
a bound on the Gaussian complexity that depends only mildly on the data dimension d,
either not at all in the case of the ℓ2 sphere or logarithmically for the ℓ1 sphere. This means
that the estimator BKerNN can be effectively used in high-dimensional settings, where
the data dimension may be exponentially large relative to the sample size. This improved
dependency on the dimension d comes at the cost of a worse dependency on the sample
size n compared to Theorem 12. Note also that there can be an implicit dependency on
the dimension through the data distribution, which we discuss in Lemma 17 at the end of
Section 4 under different data-generating mechanisms.
Proof [Proof of Theorem 14] By applying Lemma 13, we have for any ζ1 > 0

Ĝn := Eε

(
sup

w∈Sd−1,∥g∥H≤1

1

n

n∑
i=1

εig(w
⊤xi)

)

= Eε

(
sup

w∈Sd−1,∥g∥H≤1

1

n

n∑
i=1

εi

(
gζ1(w

⊤xi) + g(w⊤xi)− gζ1(w
⊤xi)

))

≤ Eε

(
sup

w∈Sd−1,∥g∥H≤1

(
1

n

n∑
i=1

εigζ1(w
⊤xi) + ∥g − gζ1∥∞

))
.

We can then change the supremum over the unit ball of H to a supremum over Lipschitz
functions

Ĝn ≤ Eε

(
sup

w∈Sd−1, gζ1 (1/ζ1)−Lip, gζ1 (0)=0

1

n

n∑
i=1

εigζ1(w
⊤xi)

)
+ ζ1

=
1

ζ1
Eε

(
sup

h 1−Lip, h(0)=0
sup

w∈Sd−1

1

n

n∑
i=1

εih(w
⊤xi)

)
+ ζ1

= 2

√√√√Eε

(
sup

h 1−Lip, h(0)=0
sup

w∈Sd−1

1

n

n∑
i=1

εih(w⊤xi)

)
,
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by choosing the best ζ1. Technically, we can restrict ourselves to the following class of func-
tion: F1−Lip := {h : [−maxi∈[n] ∥xi∥∗,maxi∈[n] ∥xi∥∗]→ R | h(0) = 0, h is 1− Lipschitz}.

We then use a covering argument. To cover F1−Lip up to precision ζ2 > 0 in ∥ · ∥∞ norm

with M functions from F1−Lip, one needs M ≤
(
8maxi∈[n] ∥xi∥∗

ζ2
+ 1
)
2

4maxi∈[n] ∥xi∥
∗

ζ2 (Luxburg
and Bousquet, 2004, Theorem 17). Let h1, . . . hM be such a covering. This yields that

Ĝn ≤ 2

√√√√Eε

(
sup

h∈F1−Lip

sup
w∈Sd−1

1

n

n∑
i=1

εih(w⊤xi)

)

≤ 2

√√√√Eε

(
sup

h∈{h1,...,hM}
sup

w∈Sd−1

1

n

∑
i

εih(w⊤xi)

)
+ ζ2,

by proceeding as with the covering of the unit ball of H.

We then use Lemma 19 to bound the expectation on the supremum of the finite set of
Lipschitz functions, which is inspired by Bartlett and Mendelson (2002). This yields

Eε

(
sup

h∈{h1,...,hM},w∈Sd−1

1

n

n∑
i=1

εih(w
⊤xi)

)

≤ Eε

(∥∥∥∥√2n
n∑

i=1

εixi

∥∥∥∥∗ +
√

8

∑n
i=1(∥xi∥∗)2

n2

√
2 logM

)
. (13)

We then consider each term of Equation (13) separately, while also taking expectation
with regards to the data set. For the second term, using the bound on M (Luxburg and
Bousquet, 2004, Theorem 17) and basic inequalities to simplify the term, we have

Eε,Dn

(√
8

∑n
i=1(∥xi∥∗)2

n2

√
2 logM

)

≤ EDn

√8

∑n
i=1(∥xi∥∗)2

n2

√
4maxi∈[n] ∥xi∥∗

ζ2
log 2 + log

(
8maxi∈[n] ∥xi∥∗

ζ2
+ 1

)
≤ EDn

8

√∑n
i=1(∥xi∥∗)2

n2

√
maxi∈[n] ∥xi∥∗

ζ2


≤ 8√

n

1√
ζ2
EDn

(
max
i∈[n]

(∥xi∥∗)3/2
)
≤ 8√

n

1√
ζ2

(
EDn

(
max
i∈[n]

(∥xi∥∗)2
))3/4

.
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We can reinject, yielding

G2
n

4
≤ Eε,Dn

(∥∥∥∥√2n
n∑

i=1

εixi

∥∥∥∥∗
)

+
8√
n

1√
ζ2

(
EDn

(
max
i∈[n]

(∥xi∥∗)2
))3/4

+ ζ2

≤ Eε,Dn

(∥∥∥∥√2n
n∑

i=1

εixi

∥∥∥∥∗
)

+ 2

(
8√
n

(
EDn

(
max
i∈[n]

(∥xi∥∗)2
))3/4

)2/3

≤ Eε,Dn

(∥∥∥∥√2n
n∑

i=1

εixi

∥∥∥∥∗
)

+ 2
4

n1/3

√
EDn

(
max
i∈[n]

(∥xi∥∗)2
)
,

by taking ζ
3/2
2 = 8√

n

(
EDn

(
maxi∈[n](∥xi∥∗)2

))3/4 in the second line.
Now for the first term from Equation (13) which we have to deal with still, consider first

the case ∥ · ∥∗ = ∥ · ∥2 then,

Eε,Dn

(
∥
√
2

n

n∑
i=1

εixi∥2

)
≤

√√√√Eε,Dn

(
∥
√
2

n

n∑
i=1

εixi∥22

)

=

√
2

n

√√√√EDn

(
n∑

i=1

∥xi∥22

)
=

√
2√
n

√
EX

(
∥X∥22

)
.

In the other case where ∥ · ∥∗ = ∥ · ∥∞, we can use Boucheron et al. (2013, Theorem 2.5), as
for a fixed data set Dn,

∑n
i=1 εis(xi)a is a centred Gaussian vector with variance equal to∑n

i=1((xi)a)
2 which is smaller than maxa∈[d]

∑n
i=1((xi)a)

2. This yields that

Eε,Dn

(
∥
√
2

n

n∑
i=1

εixi∥∞

)
=

√
2

n
Eε,Dn

(
max
a∈[d]
|

n∑
i=1

εi(xi)a|

)

=

√
2

n
Eε,Dn

(
max

a∈[d],s∈{−1,1}

n∑
i=1

εis(xi)a

)

≤
√
2

n
EDn

max
a∈[d]

√√√√2

n∑
i=1

((xi)a)2 log(2d)

 .

We then have

Eε,Dn

(
∥
√
2

n

n∑
i=1

εixi∥∞

)
≤ 2

n

√
log 2dEDn

√√√√max
a∈[d]

n∑
i=1

((xi)a)2


≤ 2

n

√
log 2dEDn

√√√√ n∑
i=1

max
a∈[d]

((xi)a)2


≤ 2

n

√
log 2dEDn

√√√√ n∑
i=1

∥xi∥2∞


≤ 2√

n

√
log 2d

√
EX (∥X∥2∞).
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This yields that the last term of Equation (13) can be bounded

G2
n

4
≤

(
2√
n

√
log 2d1∗=∞ +

√
2√
n
1∗=2

)√
EX((∥X∥∗)2) + 2

4

n1/3

√
EDn

(
max
i∈[n]

(∥xi∥∗)2
)

≤
(√

log 2d1∗=∞ + 1∗=2

) 8

n1/3

√
EDn

(
max
i∈[n]

(∥xi∥∗)2
)
,

hence

Gn ≤
(√

log 2d1∗=∞ + 1∗=2

)1/4 6

n1/6

(
EDn

(
max
i∈[n]

(∥xi∥∗)2
))1/4

,

which concludes the proof.

4.2 Bound on Expected Risk of Regularised Estimator

We now use the bounds on the Gaussian complexity we have obtained in Section 4.1 to
derive a bound on the expected risk of BKerNN. We show that, with explicit rates, the
expected risk of our estimator converges with high-probability to that of the minimiser for
data with subgaussian norms, which includes both bounded data and data with subgaus-
sian components. First, we provide a definition of subgaussian real variables, as given by
Vershynin (2018).

Definition 15 (Subgaussian Variables) Let Z be a real-valued (not necessarily centred)
random variable. Z is subgaussian with variance proxy σ2 if and only if

∀t > 0,max (P(Z ≥ t),P(Z ≤ −t)) ≤ e−
t2

2σ2 .

We now present the main theoretical result of the paper.

Theorem 16 (Bound on Expected Risk with High-Probability) Let the estimator
function be f̂λ := argminf∈F∞ R̂(f) + λΩ(f). Assume the following:

1. Well-specified model: The minimiser f∗ := argminf∈F∞ R(f) exists.

2. Convexity of the loss: For any (x, y) ∈ X × Y, f ∈ F∞ → ℓ(y, f(x)) is convex.

3. Lipschitz condition: The loss ℓ is L-Lipschitz in its second (bounded) argument,
i.e., ∀y ∈ Y, a ∈ {f(x) | x ∈ X , f ∈ F∞, Ω(f) ≤ 2Ω(f∗)}, a→ ℓ(y, a) is L-Lipschitz.

4. Data distribution: The data set (xi, yi)i∈[n] consists of i.i.d. samples of the random
variable (X,Y ) where 1 +

√
∥X∥∗ is subgaussian with variance proxy σ2.

Then, for any δ ∈ (0, 1), with probability larger than 1 − δ, for λ = 12L
(

1√
n
+Gn

)
+

288Lσ√
n

√
log 1

δ ,

R(f̂λ) ≤ R(f∗) + 24Ω(f∗)L

(
1√
n
+Gn +

24σ√
n

√
log

1

δ

)
.
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With the bounds on Gn from Theorem 12 and Theorem 14, recall that if ∥ · ∥ is either
∥ · ∥2 or ∥ · ∥1, we have

Gn ≤ min

(
6

n1/6

(
(log 2d)1/41∗=∞ + 1∗=2

)(
EDn

(
max
i∈[n]

(∥Xi∥∗)2
))1/4

,

8

√
d

n

√
log(n+ 1)

√
EX∥X∥∗

)
.

Proof [Proof of Theorem 16] This proof is primarily based on Bach (2024, Proposition 4.7).
Let f∗

λ be a minimiser of Rλ := R + λΩ over F∞. Consider the set Cτ := {f ∈ F∞ |
Rλ(f) − Rλ(f

∗
λ) ≤ τ} for some τ > 0 that will be chosen later. Cτ is a convex set by the

convexity assumption on the loss ℓ.
First, we show that Cτ is included in the set Bτ := {f ∈ F∞ | Ω(f) ≤ Ω(f∗) + τ/λ}.

This inclusion follows from the optimality of f∗ and f∗
λ . Let f ∈ Cτ , then

Rλ(f) ≤ Rλ(f
∗
λ) + τ ≤ Rλ(f

∗) + τ ≤ R(f) + λΩ(f∗) + τ,

yielding f ∈ Bτ .
Next, set τ = λΩ(f∗) with λ to be chosen later. We show that f̂λ belongs to Cτ with

high probability. If f̂λ /∈ Cτ , since f∗
λ ∈ Cτ and Cτ is convex, there exists a f̃ in the segment

[f̂λ, f
∗
λ ] and which is on the boundary of Cτ , i.e. such that Rλ(f̃) = Rλ(f

∗
λ) + τ . Since the

empirical risk is convex, we have R̂λ(f̃) ≤ max(R̂λ(f̂λ), R̂λ(f
∗
λ)) = R̂λ(f

∗
λ). Then,

R̂(f∗
λ)− R̂(f̃)−R(f∗

λ) +R(f̃) = R̂λ(f
∗
λ)− R̂λ(f̃)−Rλ(f

∗
λ) +Rλ(f̃)

≥ −Rλ(f
∗
λ) +Rλ(f̃) = τ. (14)

Note that Ω(f̃) ≤ 2Ω(f∗) and Ω(f∗
λ) ≤ 2Ω(f∗). Combining Lemma 20 and Lemma 22,

for δ ∈ (0, 1), with probability greater than 1 − δ, we have for all f ∈ F∞ such that
Ω(f) ≤ 2Ω(f∗):

R̂(f∗
λ)−R̂(f)−R(f∗

λ) +R(f)

≤ EDn

(
sup

f∈F∞,Ω(f)≤2Ω(f∗)
R̂(f)−R(f) + sup

f∈F∞,Ω(f)≤2Ω(f∗)
R(f)− R̂(f)

)

+Ω(f∗)
96
√
2eLσ√
n

√
log

1

δ

≤ 12Ω(f∗)L

(
1√
n
+Gn

)
+Ω(f∗)

96
√
2eLσ√
n

√
log

1

δ
.

Now, choose λ such that τ = λΩ(f∗) ≥ 12Ω(f∗)L
(

1√
n
+Gn

)
+ Ω(f∗)96

√
2eLσ√
n

√
log 1

δ .
This yields a contradiction with Equation (14). Thus, with such a λ, with probability greater
than 1− δ, we have f̂λ ∈ Cτ , hence

Rλ(f̂λ) ≤ Rλ(f
∗
λ) + λΩ(f∗),

R(f̂λ) ≤ R(f∗) + 2λΩ(f∗).
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For λ = 12L
(

1√
n
+Gn

)
+ 288Lσ√

n

√
log 1

δ , this yields

R(f̂λ) ≤ R(f∗) + Ω(f∗)

(
24L

(
1√
n
+Gn

)
+

576Lσ√
n

√
log

1

δ

)
.

We now provide insightful comments on Theorem 16. We first remark that the result could
be proven more directly for bounded data using McDiarmid’s inequality, resulting in a better
constant.

The chosen λ does not depend on unknown quantities such as Ω(f∗), but only on known
quantities such as the Lipschitz constant of the loss, the sample size, or the dimension of the
data. This allows λ to be explicitly chosen for a fixed probability δ, although it is usually
computed through cross-validation.

Classical losses typically satisfy our assumptions. For instance, the square loss is always
convex and L-Lipschitz if the data and response are bounded, with L = 2 supy∈Y |y| +
4Ω(f∗) supx∈X ∥x∥∗. Similarly, the logistic loss is always convex and L-Lipschitz with L = 1
(in the context of outputs in {−1, 1}). While our primary analysis relies on the Lipschitz
property, an alternative approach using offset Rademacher complexity (Liang et al., 2015)
or the direct computations proposed by Bach (2024, Chapter 8) could accommodate the
square loss.

Our approach stands out by requiring minimal assumptions on the data-generating mech-
anism, which is less restrictive compared to other methodologies in the multi-index model
domain. This emphasis on general applicability is also why we do not include feature recov-
ery results, as such outcomes typically necessitate strong assumptions about the data and
often require prior knowledge of the distribution.

The rates obtained depend explicitly on the dimension of the data through the bound on
the Gaussian complexity. Considering the first term in the minimum, we observe that the
bound is independent (up to logarithmic factors) of the data dimension, making BKerNN
suitable for high-dimensional problems. However, this bound has a less favourable depen-
dency on the sample size compared to the dimension-dependent bound, which is the second
term in the minimum. We conjecture that the actual rate has the best of both worlds, achiev-
ing an explicit dependency on dimension d and sample size n of n−1/2 (up to logarithmic
factors).

Comparing the rate between BKerNN, neural networks with ReLU activations, and
kernel methods, we find that in well-specified settings (where the Bayes estimator belongs to
each function space considered), KRR yields a O(n−1/2) rate independent of dimension, but
require very smooth functions, for example, a Sobolev space of order s (i.e. the derivatives
up to order s are square integrable) is only a RKHS if s > d/2 (Bach, 2024, Chapter 7).
Neural networks with ReLU activation achieve a similar rate with fewer constraints, as their
function space is typically larger than RKHS spaces (Bach, 2024, Chapter 9).

However, in the case of linear latent variables, i.e., under the multiple index model
where f∗ = g∗(P⊤x) with P a d×k matrix with k < d and orthonormal columns, the RKHS
cannot take advantage of this hypothesis and the rates remain unchanged. In contrast, the
neural network can, assuming that g∗ has bounded Banach norm, then we only pay the
price of the k underlying dimensions and not the full d dimensions (Bach, 2024, Section 9.4).
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BKerNN also has this property, which is visible by using the simple arguments presented
in the discussion in Bach (2024, Section 9.3.5), which show that Ω(f∗) ≤ Ω(g∗). Moreover,
the optimisation process for BKerNN is much easier than that of neural networks, and
our function space is larger, underscoring the attractiveness of BKerNN. Our analysis in
this section could be complemented by an analysis of the mis-specified case (i.e., f∗ only
assumed to be Lipschitz), where, controlling both approximation and estimation errors, we
should expect our method to benefit from the same adaptivity to linear latent variables as
neural networks (Bach, 2017).

There is also an implicit dependency on the dimension in Theorem 16 through data-
dependent terms, namely the variance proxy σ2 or the expectations in the bound of Gn.
We now examine these quantities under two data-generating mechanisms: bounded and
subgaussian variables.

Lemma 17 (Analysis of Data-Dependent Terms in Theorem 16) The following in-
equalities hold.

1. If X is bounded, i.e., ∥X∥∗ ≤ R almost surely, then√
EX∥X∥∗ ≤

√
R,

(
EDn

(
max
i∈[n]

(∥Xi∥∗)2
))1/4

≤
√
R.

Moreover, 1 +
√
∥X∥∗ is subgaussian with variance proxy σ2 ≤ 1 +

√
R.

2. If X is a vector of subgaussian variables (not necessarily centred or independent) with
variance proxy σ2

a for component Xa, then

√
EX(∥X∥2) ≤

√
6

(
d∑

a=1

σ2
a

)1/4

,
√

EX(∥X∥∞) ≤ 4(log d)1/4max
a∈[d]

√
σa,

EDn

(
max
i∈[n]
∥Xi∥22

)1/4

≤ 4(1 + log(n))1/4

(
d∑

a=1

σ2
a

)1/4

,

EDn

(
max
i∈[n]
∥Xi∥∞

)1/4

≤ 4(1 + log(nd))1/4max
a∈[d]

√
σa.

Furthermore, 1+
√
∥X∥2 is subgaussian with variance proxy σ2 ≤ (1+

∑d
a=1 σa)

2, and
1 +

√
∥X∥∞ is subgaussian with variance proxy σ2 ≤ 2 +maxa∈[d] σ

2
a(1 +

√
log(2d))2.

See the proof in Appendix A.4.5. Note that R usually does not implicitly depend on the
dimension in the ∥ · ∥∗ = ∥ · ∥∞ case, and R can typically be O(d1/2) in the ∥ · ∥2 case. For
the subgaussian mechanism, each σa typically does not depend on the dimension.

5 Numerical Experiments

In this section, we present and analyse the properties of BKerNN. The BKerNN imple-
mentation in Python is fully compatible with Scikit-learn (Pedregosa et al., 2011), ensuring
seamless integration with existing machine learning workflows. The source code, along with
all necessary scripts to reproduce the experiments, is available at https://github.com/
BertilleFollain/BKerNN. We define the scores and other estimators in the section below.
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5.1 Introduction to Scores and Competitors

In the experiments below, we use two scores to assess performance. The prediction score
is defined as the coefficient of determination, a classical metric in the statistics literature
(Wright, 1921), R2, which ranges from −∞ to 1, where a score of 1 indicates perfect pre-
diction, a score of 0 indicates that the model predicts no better than the mean of the target
values, and negative values indicate that the model performs worse than this baseline. Math-
ematically, the R2 score is defined as follows

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
, (15)

where yi are the true values, ŷi are the predicted values, ȳ is the mean of the true values,
and n is the number of samples.

The feature learning score measures the model’s ability to identify and learn the true
feature space (1 being the best, 0 the worst). It is computable only when the underlying
feature space (in the form of a matrix P ∈ Rd×k, with k the number of features) is known
and relevant only when features are of similar importance, which we have ensured in the
experiments below.

Depending on the regularisation type, the estimated feature matrix P̂ is computed via
singular value decomposition (SVD) for Ωfeature, Ωconcave feature or Ωbasic regularisation, or by
selecting the top k variables for Ωvariable or Ωconcave variable regularisation. We then compute
the projection matrices πP̂ and πP and calculate the feature learning error as the normalised
Frobenius norm of their difference

πP̂ = P̂ (P̂⊤P̂ )−1P̂⊤ and πP = P (P⊤P )−1P⊤,

score =

{
1− ∥πP−πP̂ ∥2F

2k ifk ≤ nfeatures
2 ,

1− ∥πP−πP̂ ∥2F
2nfeatures−2k ifk > nfeatures

2 ,
(16)

where the score is 1 if k = nfeatures.
In several experiments, we compare the performance of BKerNN against ReLUNN and

BKRR. BKRR refers to Kernel Ridge Regression using the multi-dimensional Brownian
kernel k(mdB)(x, x′) = (∥x∥ + ∥x′∥ − ∥x − x′∥)/2. ReLUNN is a simple one-hidden-layer
neural network with ReLU activations, trained using batch stochastic gradient descent.

5.2 Experiment 1: Optimisation Procedure, Importance of Positive
Homogeneous Kernel

In this experiment, we compare BKerNN with two methods that differ from BKerNN
only through the kernel that is used. We wish to illustrate the importance of the homogene-
ity assumptions discussed in Section 3.2. Specifically, we consider ExpKerNN with the
(rescaled) exponential kernel kexp(a, b) = e−|a−b|/2 and GaussianKerNN with the Gaus-
sian kernel kGaussian(a, b) = e−|a−b|2/2. Unlike the Brownian kernel used in BKerNN, the
exponential and Gaussian kernels are not positively 1-homogeneous.

We trained all three methods on a simulated data set, using cross-validation to select the
regularisation parameter λ while keeping other parameters fixed (m = 100, basic regularisa-
tion, more details are provided in Appendix B.1). The training set consisted of 214 samples
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Figure 1: MSE across optimisation procedure for different kernels.

and the test set of 1024. The data had d = 45 dimensions with k = 5 relevant features,
and Gaussian additive noise with a standard deviation of 0.5. An orthogonal matrix P of
size d× d was sampled uniformly from the orthogonal group before being truncated to size
d × k. The covariates were sampled uniformly from [−1, 1]d, and the target variable y was
computed as y = 2π

∣∣∣∑k
a=1(P

⊤x)a

∣∣∣+ noise.
We displayed the mean squared error (MSE) on both the training and test sets for the

selected λ for each method in Figure 1. While all three methods perform very well on the
training set, the test set performance of ExpKerNN and GaussianKerNN is significantly
worse compared to BKerNN. This discrepancy is not due to suboptimal regularisation
choices, as cross-validation was used to select the best λ for each method.

Instead, the superior test performance of BKerNN underscores its effective optimi-
sation process, avoiding the pitfalls of local minima that seem to trap ExpKerNN and
GaussianKerNN. Our observations in Figure 1 strongly support our discussion in Sec-
tion 3.2 on the critical role of the positive homogeneity of the kernel in ensuring convergence
to a global minimum.

5.3 Experiments 2 & 3: Influence of Parameters (Number of Particles m,
Regularisation Parameter λ, and Type of Regularisation)

In these experiments, we explore the impact of various parameters on the performance of
BKerNN. Detailed descriptions can be found in Appendix B.2, and the results are presented
in Figure 2. The R2 score used to assess performance is described in Equation (15).

5.3.1 Experiment 2

The first two subplots of Figure 2 illustrate the effects of the number of particles m and the
regularisation parameter λ while keeping the data generation process consistent. The data
set is the same for the two subplots. We used 412 training samples and 1024 test samples,
with a data dimensionality of d = 20 and k = 5 relevant features. The standard deviation of
additive Gaussian noise was set to 0.1. The covariates were sampled uniformly from [−1, 1]d.
The target variable y was computed using the formula y =

∑k
a=1 |2πxa|+ noise.

Number of Particles (m): the first subplot shows that with too few particles, the estima-
tor struggles to fit the training data, leading to poor performance on the test set. However,
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Figure 2: Influence of parameters: left: m, middle: λ, right: type of penalty.

beyond a certain threshold, increasing the number of particles does not yield significant
improvements in performance.

Regularisation Parameter (λ): the second subplot demonstrates the typical behaviour of
a regularised estimator. When λ is too small, the model overfits the training data, resulting
in poor test performance. Conversely, when λ is too large, the model underfits, performing
poorly on both the training and test sets. Optimal performance on both sets is achieved
with an intermediate value of λ.

5.3.2 Experiment 3

The third subplot in Figure 2 examines the influence of the type of regularisation across
three distinct data-generating mechanisms: (1) without underlying features, i.e., where all
of the data is needed, (2) with few relevant variables, (3) with few relevant features. We
used 214 training samples and 1024 test samples, with a data dimensionality of d = 20 and
k = 5 relevant features. The standard deviation of additive Gaussian noise was set to 0.5,
and the data set was generated 20 times with different seeds. The covariates were always
sampled uniformly on [−1, 1]d but the response was generated in three different ways. In the
“no underlying structure” data set, we had y =

∑d
a=1 sin(Xa) + noise. In the “few relevant

variables” data set, we had y =
∑k

a=1 sin(xa)+noise. In the “few relevant features data set”,
we sampled P a d×d matrix from the orthogonal group uniformly, truncated it to size d×k
and the response was generated as y =

∑k
a=1 sin((P

⊤x)a) + noise. The mean and standard
deviation of the R2 score on the test set are reported.

When there is no underlying structure, all regularisers perform somewhat similarly. How-
ever, for data sets featuring relevant variables, the Ωvariable and Ωconcave variable regularisa-
tions shine, delivering superior performance. Similarly for the Ωfeature and Ωconcave feature

regularisations on data sets with few relevant features. Remarkably, for data with underly-
ing structure, the concave versions of both Ωvariable and Ωfeature regularisations outperform
their non-concave counterparts. This demonstrates their superior ability to effectively select
relevant information in the data while maintaining strong predictive power.
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5.4 Experiment 4: Comparison to Neural Network on 1D Examples, Influence
of Number of Particles/Width of Hidden Layer m

In Experiment 4, we compare the learning capabilities of BKerNN against a simple neural
network, ReLUNN. We study three distinct functions, corresponding to each row in Fig-
ure 3. In all rows, the training set is represented by small black crosses, while the target
function is shown in blue. The first two columns depict BKerNN using two different num-
bers of particles: m = 1 and m = 5. The last three columns show results for ReLUNN
with varying numbers of neurons in the hidden layer: 1, 5, and 32. See Appendix B.3 for
more experimental details.

Notably, BKerNN demonstrates great learning capabilities, successfully capturing the
functions even with just one particle. Increasing the number of particles (second column)
offers minimal additional benefit, underscoring BKerNN’s efficiency. In stark contrast,
ReLUNN struggles significantly when limited to the same number of hidden neurons as
BKerNN’s particles. However, once the hidden layer is expanded to 32 neurons, ReLUNN
begins to show satisfactory learning capabilities. These results highlight BKerNN’s superior
efficiency in learning functions with a minimal number of particles, outperforming ReLUNN,
which requires a more complex architecture to achieve comparable performance.

5.5 Experiment 5: Prediction Score and Feature Learning Score Against
Growing Dimension and Sample Size, a Comparison of BKerNN with
Brownian Kernel Ridge Regression and a ReLU Neural Network

In Experiment 5, we evaluate the performance of BKerNN, BKRR and ReLUNN across
varying sample sizes and dimensions on simulated data sets. The estimators are presented
in Section 5.1. The R2 and feature learning score used to assess performance are described
in Equations (15) and (16) respectively. The results are presented in Figure 4. For more
details about the experiment, see Appendix B.4.

The two subplots on the top row of Figure 4 show the effect of increasing the sample size
while keeping the dimension fixed. In the two subplots of the bottom row, the sample size is
fixed, and the dimension is increased. For each combination of sample size and dimension,
ten data sets were generated. We display the two scores of each method on each data set,
as well as the average score across data sets. The feature learning score for BKRR is not
defined and, therefore, not displayed. The number of particles (for BKerNN) and hidden
neurons (for ReLUNN) is fixed at 50 across all experiments.

For all the data sets, the covariates were uniformly sampled in [−1, 1]d, the underlying
features matrix P was uniformly sampled from the orthogonal group, then truncated to
have k = 3 relevant features, and the response was set as y =

∣∣∣∑k
a=1 sin

(
(P⊤x)a

)∣∣∣.
In the first two subplots, the dimension is fixed at 15. As the sample size increases, we

observe improvements in the prediction scores of all three methods. However, the prediction
score of BKRR improves at a much slower pace. Both BKerNN and ReLUNN achieve high
prediction scores more rapidly, with BKerNN requiring fewer samples to do so. Notably,
BKerNN excels in feature learning, effectively capturing the underlying feature space, while
ReLUNN fails regardless of the number of samples.

In the last two subplots, where the sample size is fixed at 212, we notice a general
decline in performance as the dimension increases. BKRR shows the most rapid deterio-
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Figure 3: Comparison to neural network on 1D examples.
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Figure 4: Performance comparison across varying sample sizes and dimensions.

ration because it cannot learn features, struggling significantly with higher dimensions. In
contrast, BKerNN demonstrates remarkable resilience to increasing dimensionality, main-
taining better performance compared to the other methods. ReLUNN falls somewhere in
between, neither as robust as BKerNN nor as weak as BKRR. Similarly, for the feature
learning score, both BKerNN and ReLUNN show decreased performance, but BKerNN
is slightly less affected, underscoring its ability to handle high-dimensional data.

5.6 Experiment 6: Comparison on Real Data Sets Between BKerNN,
Brownian Kernel Ridge Regression and a ReLU Neural Network

In Experiment 6, we evaluate the R2 scores, defined in Equation (15), of four methods:
BKRR, BKerNN with concave variable regularisation, BKerNN with concave feature
regularisation, and ReLUNN, across 17 real-world data sets. These data sets were obtained
from the tabular benchmark numerical regression suite via the OpenML platform, as de-
scribed by Grinsztajn et al. (2022). Each data set was processed to include only numerical
variables and rescaled to have centred covariates with standard deviation equal to one. The
data sets were uniformly cropped to contain 400 training samples and 100 testing samples
(except for a few datasets, see Appendix B.5), with dimensionality varying across data sets
as shown in Figure 5. For both BKerNN and ReLUNN, the number of particles or hidden
neurons was set to twice the dimension of each data set (except for the dataset with the
highest dimension, “semeion”, d = 256, where it was fixed to a 100), while the training
parameters were fixed. Details are available in Appendix B.5.

The results indicate that BKRR often performs the worst among all methods. In con-
trast, BKerNN with concave feature regularisation and ReLUNN frequently emerge as the
best estimators, performing similarly well on average across the various data sets.
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Figure 5: Comparison of R2 scores on real data sets.

6 Conclusion

To conclude, we have introduced a novel framework for feature learning and function es-
timation in supervised learning, termed Brownian kernel neural network (BKerNN). By
leveraging regularised empirical risk minimisation over averages of Sobolev spaces on one-
dimensional projections of the data, we established connections to kernel ridge regression
and infinite-width one-hidden layer neural networks. We provide a particle-based compu-
tational method for BKerNN, emphasising the importance of the positive homogeneity of
the Brownian kernel. Through rigorous theoretical analysis, we demonstrated that, in the
well-specified setting for subgaussian data, BKerNN achieves convergence of its expected
risk to the minimal risk with explicit rates, potentially independent of the data dimension,
underscoring the efficacy of our approach. We have extensively discussed the relationship
between the space of functions we propose and other classical functions spaces. Numerical
experiments across simulated scenarios and real data sets confirm BKerNN’s superiority
over traditional kernel ridge regression and competitive performance with neural networks
employing ReLU activations, achieved with fewer particles or hidden neurons. Future re-
search directions include the development of more efficient algorithms for the computation
of the estimator, improved analysis of the Gaussian complexity, and theoretical investigation
of other penalties.
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Appendix A. Extra Lemmas and Proofs

In this appendix, we present and/or prove some of the results needed in the main text.

A.1 Proofs of Section 2.3 Lemmas

Here we give the proofs of the lemmas describing characteristics of the function space F∞.

A.1.1 Proof of Lemma 3

Proof [Proof of Lemma 3] We first check that F∞ is a vector space.
Let f ∈ F∞, a constant c and a sequence of measures (µi)i∈N defining f (i.e. ∀i ∈ N, f =

c+
∫
H×Sd−1 g(w

⊤·)dµi(g, w)) such that Ω0(f) = limi→∞
∫
H×Sd−1 ∥g∥Hdµi(g, w). Recall that

c is unique for a given f as it is equal to f(0).
Then, let τ ∈ R. We have ∀i ∈ N, τf = τc +

∫
H×Sd−1 τg(w

⊤·)dµi(g, w) = τc +∫
H×Sd−1 g̃(w

⊤·)dµ̃i(g̃, w), with the change of variable g̃ = τg inducing the change on the
measure dµ̃i(g̃, w) = dµi(g̃/τ, w) and µ̃i is still a probability measure (using the pushforward
measure technique, see Peyré and Cuturi (2019)) . We also see that for any i,∫

H×Sd−1

∥g̃∥Hdµ̃i(g̃, w) = |τ |
∫
H×Sd−1

∥g∥Hdµi(g, w),

and hence since |τ |Ω0(f) = |τ | limi→∞
∫
H×Sd−1 ∥g∥Hdµi(g, w), we have

lim
i→∞

∫
H×Sd−1

∥g̃∥Hdµ̃i(g̃, w) = |τ |Ω0(f)

and therefore Ω0(τf) < ∞ and Ω0(τf) ≤ |τ |Ω0(f), which means that τf belongs to F∞.
Now we can also use this property to obtain that Ω0(f) = Ω0(

1
τ τf) ≤

1
|τ |Ω0(τf) ≤ Ω0(f)

and hence Ω0(τf) is actually equal to |τ |Ω0(f).
Now let f1, f2 ∈ F∞, defined respectively using c1, c2 ∈ R and two sequences of mea-

sures (µ
(1)
i )i∈N, (µ

(2)
i )i∈N such that Ω0(f1) = limi→∞

∫
H×Sd−1 ∥g∥Hdµ(1)

i (g, w) and Ω0(f2) =

limi→∞
∫
H×Sd−1 ∥g∥Hdµ(2)

i (g, w). Now for any i ∈ N, we have

(f1 + f2)(·) = c1 + c2 +

∫
H×Sd−1

g(w⊤·)dµ(1)
i (g, w) +

∫
H×Sd−1

g(w⊤·)dµ(2)
i (g, w),

and hence (f1 + f2)(·) = (c1 + c2) +
∫
H×Sd−1 g(w

⊤·)d
(
µ
(1)
i + µ

(2)
i

)
(g, w) and moreover,

(f1 + f2)(·) = (c1 + c2) +
∫
H×Sd−1 2g(w

⊤·)d
(

µ
(1)
i +µ

(2)
i

2

)
(g, w).
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Using a change of variable as we did for τf , this means that we can write f1 + f2 using
a probability measure and a real constant, in the same way as the functions in F∞. For
f1 + f2 to belong to F∞, we now need to check that Ω0(f1 + f2) is well defined.

We first consider the function f̃ :=
∫
H×Sd−1 g(w

⊤·)d
(

µ
(1)
i +µ

(2)
i

2

)
(g, w) (for any i ∈ N).

We have that

lim
i→∞

∫
H×Sd−1

∥g∥Hd

(
µ
(1)
i + µ

(2)
i

2

)
(g, w) =

Ω0(f1) + Ω0(f2)

2
,

by simply splitting the integral. Therefore the function f̃ is such that Ω0(f̃) <∞ and belongs
to F∞ with Ω0(f̃) ≤ Ω0(f1)+Ω0(f2)

2 . It suffices then to notice that f1+ f2 = c1+ c2+2f̃ (and
that the intercept has no impact on the definition of Ω0) to obtain that Ω0(f1 + f2) is well
defined and that Ω0(f1 + f2) ≤ Ω0(f1) + Ω0(f2), hence f1 + f2 belongs to F∞.

This yields that F∞ is a vector space. We also see that Ω(f1 + f2) = max(f1(0) +
f2(0),Ω0(f1 + f2)) ≤ Ω(f1) + Ω(f2). Since Ω(f) = 0 ⇐⇒ f = 0, we have that Ω is a norm
on F∞.

We now check the Hölder continuity property. Let µ be any measure defining f ∈ F∞
and c = f(0), then

f(x)− f(x′) = c+

∫
H×Sd−1

g(w⊤x)dµ(g, w)− c−
∫
H×Sd−1

g(w⊤x′)dµ(g, w)

=

∫
H×Sd−1

⟨g, kw⊤x − kw⊤x′⟩dµ(g, w)

|f(x)− f(x′)| ≤
∫
H×Sd−1

∥g∥H∥kw⊤x − kw⊤x′∥Hdµ(g, w)

≤
∫
H×Sd−1

∥g∥H
√
|w⊤(x− x′)|dµ(g, w)

≤
∫
H×Sd−1

∥g∥H
√
∥x− x′∥∗dµ(g, w) ≤ Ω0(f)

√
∥x− x′∥∗.

A.1.2 Proof of Lemma 4

Proof [Proof of Lemma 4] Let us assume now that we only consider functions f with
support on the ball with centre 0, radius R and norm ∥ · ∥∗, which we denote B(0, R). Then
we can actually consider the functions g which define F∞ to belong to H′ := {g : R →
R dim g(0) = 0,

∫ R
−R(g

′(t))2dt}, and it is still a RKHS with the same reproducing kernel.
Let f ∈ F∞, f = c+

∫
H×Sd−1 g(w

⊤·)dµ(g, w). Then, because we have restrained on the ball
and we are continuous, f is necessarily in L1(B(0, R)) (set of integrable functions) and in
L2(B(0, R)). It has a Fourier decomposition, with

f(x) =
1

(2π)d

∫
Rd

f̂(ω)eiω
⊤xdω,
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and then we have

Ω0(f) ≤
1

(2π)d

∫
Rd

|f̂(ω)|Ω0(e
iω⊤x)dω

and we can then study Ω0(e
iω⊤x).

We have eiω
⊤x = gω

(
ω

∥ω∥
⊤x
)

with gω : t ∈ [−R,R] → eit∥ω∥ which belongs to (the

complex version of) H, with ∥gω∥H =
√∫ R

−R ∥ω∥2|eit∥ω∥|2dt ≤
√
2R∥ω∥.

This yields

Ω0(f) ≤
√
2R

(2π)d

∫
Rd

|f̂(ω)| · ∥ω∥dω.

A.2 Proofs of Section 2.4 Lemmas

In this section we present the proof of lemmas used to transform the optimisation problem
defining BKerNN.

A.2.1 Proof of Lemma 5

Proof [Proof of Lemma 5] Our goal is to transform Equation (5). We begin with the
following trick for the m particles setting

1

m

m∑
j=1

∥gj∥H = inf
β∈Rm

+

1

2m

m∑
j=1

(
∥gj∥2H
βj

+ βj

)
.

This allows us to rewrite Equation 5 in the following way

min
c∈R,w1,...,wm∈Sd−1,g1,...,gm∈H,β∈Rm

+

1

n

n∑
i=1

ℓ

(
yi, c+

1

m

m∑
j=1

gj(w
⊤
j xi)

)
+λ

1

2m

m∑
j=1

(
∥gj∥2H
βj

+ βj

)
.

Now if we fix (wj)j∈[m] and (βj)j∈[m] in the equation above, the minimisation problem
is equivalent to

min
c∈R,g1,...,gm∈H

1

n

n∑
i=1

ℓ(yi, c+
1

m

m∑
j=1

gj(w
⊤
j xi)) +

λ

2

1

m

m∑
j=1

∥gj∥2H
βj

. (17)

Using the representer theorem (Schölkopf et al., 2001), we express each x→ gj(w
⊤
j x) as

x→
n∑

i=1

α
(j)
i k(B)(w⊤

j xi, w
⊤
j x),

which leads to

∥gj∥2H =
n∑

i,i′=1

α
(j)
i α

(j)
i′ k(B)(w⊤

j xi, w
⊤
j xi′).
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Rewriting the norm and evaluation in kernel form with K
(wj)
i,i′ = k(B)(w⊤

j xi, w
⊤
j xi′), we

obtain
∥gj∥2H = (α(j))⊤K(wj)α(j),

and
gj(w

⊤
j xi) = (K(wj)α(j))i.

Thus, we transform Equation (17) into

min
c∈R,α(1),...,α(m)∈Rn

1

n

n∑
i=1

ℓ(yi,
1

m

m∑
j=1

(K(wj)α(j))i + c) +
λ

2

1

m

m∑
j=1

(α(j))⊤K(wj)α(j)

βj
.

We show that minimisation is attained for vectors α(j) equal to βjα for a single vector α.
Consider the convex problem

min
α(1),...,α(m)∈Rn

1

2

1

m

m∑
j=1

(α(j))⊤K(wj)α(j)

βj
,

subject to 1
m

∑m
j=1K

(wj)α(j) = z where z ∈ Rd. We define the Lagrangian

L(α(1), · · · , α(m), α) =
1

2

1

m

m∑
j=1

(α(j))⊤K(wj)α(j)

βj
+ α⊤

z − 1

m

∑
j

K(wj)α(j)

 .

By taking the differential of L with respect to α(j) at the optimum, we get

∂L
∂α(j)

=
1

m
K(wj)

(
α(j)

βj
− α

)
= 0.

The differential with respect to α yields that at the optimum, the constraint is verified,
i.e., z = 1

m

∑
j K

(wj)α(j). We note that for α(j) = βjα, all equations are satisfied, yielding
the desired result.

We can then write Equation (5) as

min
w1,...,wm∈Rd,c∈R,β∈Rm

+ ,α∈Rn

1

n

n∑
i=1

ℓ(yi, (Kα)i + c) +
λ

2
α⊤Kα+

λ

2

1

m

m∑
j=1

βj ,

with the constraints ∀j ∈ [m], wj ∈ Sd−1, and K = 1
m

∑m
j=1 βjK

(wj).
We notice that βjK

(wj) = K(βjwj) due to the positive homogeneity of the Brownian
kernel. We therefore introduce the change of variable βjwj = w̃j

min
w̃1,...,w̃m∈Rd,c∈R,α∈Rn

1

n

n∑
i=1

ℓ(yi, (Kα)i + c) +
λ

2
α⊤Kα+

λ

2

1

m

m∑
j=1

∥w̃j∥,

with K = 1
m

∑m
j=1K

(w̃j) and no constraint on the norm of w̃j . For ease of exposition in the
main text, we replace w̃ by w.
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A.2.2 Proof of Lemma 6

Proof [Proof of Lemma 6] The proof follows the same steps as the proof of Lemma 5,
systematically replacing any 1

m

∑m
j=1 with the appropriate integral over H× Sd−1 with

respect to measure µ. Before the change of variables, the problem is

min
µ∈P(H×Sd−1),c∈R,(βg)g∈RH

+ ,α∈Rn

1

n

n∑
i=1

ℓ(yi, (Kα)i + c) +
λ

2
α⊤Kα+

λ

2

∫
H×Sd−1

βgdµ(g, w),

where K =
∫
H×Sd−1 βgK

(w) dµ(g, w) =
∫
H×Sd−1 K

(βgw) dµ(g, w). The change of variables
βgw = w̃ transforms the problem into

min
(βg)g∈RH

+ ,ν∈P({βgw,g∈H,w∈Sd−1}),c∈R,α∈Rn

1

n

n∑
i=1

ℓ(yi, (Kα)i + c) +
λ

2
α⊤Kα+

λ

2

∫
Rd

∥w̃∥dν(w̃),

with K =
∫
Rd K

(w̃)dν(w̃). We can consider the integral over Rd instead of {βgw, g ∈ H, w ∈
Sd−1} by extending ν with ν(Rd \ {βgw, g ∈ H, w ∈ Sd−1}) = 0. This is equivalent to
considering the minimum over ν ∈ P(Rd) instead of the minimum over (βg)g∈H ∈ RH

+ and
ν ∈ P({βgw, g ∈ H, w ∈ Sd−1}), as we discuss now.

Indeed, the first minimum is smaller as it is considered over a larger space, but they are
equal because both the norm ∥ · ∥ and the kernel K are positively homogeneous. Hence, the
problem finally becomes

min
ν∈P(Rd),c∈R,α∈Rn

1

n

n∑
i=1

ℓ(yi, (Kα)i + c) +
λ

2
α⊤Kα+

λ

2

∫
Rd

∥w̃∥dν(w̃),

with K =
∫
Rd K

(w̃)dν(w̃). For ease of exposition in the main text, we replace w̃ by w.

A.3 Proofs of Section 3.1 Lemmas

In this section, we provide the proofs of the lemmas used to compute the estimator.

A.3.1 Proof of Lemma 7

Proof [Proof of Lemma 7] For a fixed α, the optimal c is given by c = 1⊤Y
n − 1⊤Kα

n .
Substituting this back into the objective function, we obtain

min
α∈Rn

1

2n
∥ΠY −ΠKα∥22 +

λ

2
α⊤Kα,

which is minimised for α satisfying (KΠK + nλK)α = KΠY . We can further simplify this
by observing that if (ΠK + nλI)α = ΠY , then the previous condition is satisfied.

From the equation nλα = ΠY − ΠKα, we can deduce that Πα = α because Π2 = Π.
Therefore, we can express α as α = Πα̃. Substituting this change of variable into the original
problem, we define K̃ := ΠKΠ and Ỹ := ΠY , transforming the problem into

min
α̃∈Rn

1

2n
∥Ỹ − K̃α̃∥22 +

λ

2
α̃⊤K̃α̃.
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This is a standard kernel ridge regression problem (noting that K̃ is still a valid kernel
matrix), for which the solution is known to be α̃ = (K̃ + nλI)−1Ỹ . We also have Πα̃ = α̃,
implying α = α̃ because one can show that 1⊤α̃ = 0. To see why, note that 1⊤α̃ = ⟨1, α̃⟩ =
⟨(K̃ + nλI)−11, Ỹ ⟩. Since (K̃ + nλI)−11 is proportional to 1 (as 1 is an eigenvector of
K̃ + nλI and its inverse), and ⟨Ỹ ,1⟩ = 0, we obtain the desired result.

Finally, we verify the optimal condition (KΠK + nλK)α = KΠY . Given (ΠKΠ +
nλI)α̃ = ΠY by definition, multiplying by K yields (KΠKΠ + nλK)α̃ = KΠY . Since
α̃ = α = Πα, the desired result follows.

A.3.2 Proof of Lemma 8

Proof [Proof of Lemma 8] First, we compute the derivative of G = λ
2 Ỹ

⊤(K̃+λnI)−1Ỹ with
respect to wj

∂G

∂wj
=

n∑
i,i′=1

∂G

∂Ki,i′

∂Ki,i′

∂wj

=
1

m

n∑
i,i′=1

∂G

∂Ki,i′

(
sign(w⊤

j xi)xi + sign(w⊤
j xi′)xi′ − sign(w⊤

j (xi − xi′))(xi − xi′)
)

2
.

(18)

We know that
∂G

∂(K̃ + λnI)
= −λ

2
(K̃ + λnI)−1Ỹ Ỹ ⊤(K̃ + λnI)−1,

thus
∂G

∂Ki,i′
=
∑
l,k

∂G

∂(K̃ + λnI)l,k

∂(ΠKΠ+ λnI)l,k
∂Ki,i′

=
∑
l,k

−λ

2
((K̃ + λnI)−1Ỹ Ỹ ⊤(K̃ + λnI)−1)l,kΠl,iΠi′,k

= −λ

2

(
Π(K̃ + λnI)−1Ỹ Ỹ ⊤(K̃ + λnI)−1Π

)
i,i′

= −λ

2
(Π(K̃ + λnI)−1Ỹ )i(Π(K̃ + λnI)−1Ỹ )i′ .

Substituting this back into Equation (18) and introducing Sj ∈ Rn×n with (Sj)i,i′ =
(sign(w⊤

j xi)xi + sign(w⊤
j xi′)xi′ − sign(w⊤

j (xi − xi′))(xi − xi′))/2, we get

∂G

∂wj
= − λ

2m

n∑
i,i′=1

(Π(K̃ + λnI)−1Ỹ )i(Π(K̃ + λnI)−1Ỹ )i′(Sj)i,i′

= − λ

2m
tr
(
(Π(K̃ + λnI)−1Ỹ )⊤Sj(Π(K̃ + λnI)−1Ỹ )

)
= − λ

2m
tr
(
((K̃ + λnI)−1Ỹ )⊤ΠSjΠ((K̃ + λnI)−1Ỹ )

)
.
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This implies that we can replace (Sj)i,i′ with the i-th, i′-th component of any matrix
with the same centred version, such as S̃j where (S̃j)i,i′ = −sign(w⊤

j (xi − x′i))(xi − x′i),
yielding the desired result.

A.3.3 Proof of Lemma 9

Proof [Proof of Lemma 9] We consider each penalty separately.

1. For Ωbasic(W ) = 1
2m

∑m
j=1 ∥wj∥, the penalty corresponds to a group Lasso penalty on

W ∈ Rd×m, where the groups are the columns. The proximal operator is given by:(
proxλγΩ(W )

)
j
=

(
1− λγ

2m

1

∥wj∥

)
+

wj ,

as detailed in (Bach et al., 2012, Section 3.3).

2. For Ωvariable(W ) = 1
2

∑d
a=1

(
1
m

∑m
j=1 |(wj)a|2

)1/2, this is a group Lasso setting where
the groups are the rows of W . The proximal operator is:

(proxλγΩ(w))
(a) =

(
1− λγ

2
√
m

1

∥W (a)∥2

)
+

W (a),

also found in Bach et al. (2012, Section 3.3).

3. For Ωfeature(W ) = 1
2 tr

((
1
m

∑m
j=1wjw

⊤
j

)1/2), this penalty corresponds to a Lasso
penalty on the singular values. Given W = USV ⊤ (SVD), we have:

proxλγΩ(W ) = US̃V ⊤ with S̃ =

(
1− λγ

2
√
m|S|

)
+

S,

using results from Bach et al. (2012, Section 3.3).

4. For Ωconcave variable(W ) = 1
2s

∑d
a=1 log

(
1 + s

(
1
m

∑m
j=1 |(wj)a|2

)1/2), the loss is sep-
arable along the d dimensions. Considering each W (a) separately, we compute the
proximal operator:

proxλγ
2s

log(1+ s√
m
∥·∥2)(W

(a)) = min
u(a)∈Rm

1

2
∥W (a) − u(a)∥22 +

λγ

2s
log(1 +

s√
m
∥u(a)∥2).

The subgradients of L(u(a)) := 1
2∥W

(a) − u(a)∥22 +
λγ
2s log(1 +

s√
m
∥u(a)∥2) are:

∂L
∂u(a)

= −(W (a) − u(a)) +
λγ

2s

s√
m

1

1 + s√
m
∥u(a)∥2

v(a),

where ∥v(a)∥2 ≤ 1 if u(a) = 0, and otherwise v(a) = u(a)/∥u(a)∥2.
For u(a) ̸= 0, there is a scalar c ∈ R+ such that u(a) = cW (a), yielding:

c

(
1 +

λγ

2
√
m

1

c∥W (a)∥2
1

1 + sc√
m
∥W (a)∥2

)
= 1.
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This is a second-order polynomial in c that can be solved explicitly. The determinant
∆ is

∆ =
(
1− s√

m
∥W (a)∥2

)2 − 4

(
λγ

2
√
m

1

∥W (a)∥2
− 1

)
s√
m
∥W (a)∥2.

When ∆ ≤ 0, the proximal operator is u(a) = 0. Otherwise, it suffices to compare the
two possible values of c and choose the one for which L is the smallest.

5. For Ωconcave feature(W ) = 1
2s

∑d
a=1 log

(
1+ s√

m
σa(w1, . . . , wn)

)
, we combine the results

of the third and fourth items above. The proximal operator is

proxλγΩ(W ) = US̃V ⊤,

where S̃ is obtained by replacing all ∥W (a)∥2 by σa in the computations of the proximal
of Ωconcave variable.

A.4 Extra Lemma and Proofs Related to Section 4 Except Section 4.2

Here we provided the proofs of the lemmas used to bound the Gaussian complexity.

A.4.1 Proof of Lemma 11

Proof [Proof of Lemma 11] Recall that

Gn({f ∈ F∞,Ω(f) ≤ D}) = Eε,Dn

(
sup

f∈F∞,Ω0(f)≤D,c≤D

1

n

n∑
i=1

εif(xi)

)
.

We start by considering the quantity without any expectation. Using the definitions, we
obtain

sup
f∈F∞,Ω(f)≤D

1

n

n∑
i=1

εif(xi) = sup
|c|≤D, µ s.t.

∫
H×Sd−1 ∥g∥Hdµ(g,w)≤D

1

n

n∑
i=1

εi

(
c+

∫
H×Sd−1

g(w⊤xi)dµ(g, w)

)

= D
1

n

∣∣∣∣∣
n∑

i=1

εi

∣∣∣∣∣+ sup
µ s.t.

∫
H×Sd−1 ∥g∥Hdµ(g,w)≤D

1

n

n∑
i=1

εi

∫
H×Sd−1

⟨g, k(B)

w⊤xi
⟩dµ(g, w)

where the last equality is obtained by splitting the sup and taking c = Dsign (
∑n

i=1 εi),
which is the explicit value attaining the supremum. For the first term, we can simply bound

Eε

(
D 1

n |
∑n

i=1 εi|
)
≤ D 1√

n
using the gaussianity of ε. For the second term of the equation

right above, we then have equality to
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sup
µ s.t.

∫
H×Sd−1 ∥g∥Hdµ(g,w)≤D

∫
H×Sd−1

∣∣ 1
n

n∑
i=1

εi⟨g, k(B)

w⊤xi
⟩
∣∣dµ(g, w)

≤ sup
µ s.t.

∫
H×Sd−1 ∥g∥Hdµ(g,w)≤D

∫
H×Sd−1

1g ̸=0∥g∥H
∣∣ 1
n

n∑
i=1

εi⟨
g

∥g∥H
, k

(B)

w⊤xi
⟩
∣∣dµ(g, w)

≤ sup
µ s.t.

∫
H×Sd−1 ∥g∥Hdµ(g,w)≤D

∫
H×Sd−1

1g ̸=0∥g∥H sup
w∈Sd−1,∥g̃∥H=1

∣∣ 1
n

n∑
i=1

εi⟨g̃, k(B)

w⊤xi
⟩
∣∣dµ(g, w)

≤ sup
µ s.t.

∫
H×Sd−1 ∥g∥Hdµ(g,w)≤D

sup
w∈Sd−1,∥g̃∥H=1

∣∣ 1
n

n∑
i=1

εi⟨g̃, k(B)

w⊤xi
⟩
∣∣ ∫

H×Sd−1

1g ̸=0∥g∥Hdµ(g, w)

≤ D sup
w∈Sd−1,∥g̃∥H=1

∣∣ 1
n

n∑
i=1

εi⟨g̃, k(B)

w⊤xi
⟩
∣∣ ≤ D sup

w∈Sd−1,∥g̃∥H≤1

∣∣ 1
n

n∑
i=1

εi⟨g̃, k(B)

w⊤xi
⟩
∣∣

≤ D sup
w∈Sd−1,∥g̃∥H≤1

1

n

n∑
i=1

εi⟨g̃, k(B)

w⊤xi
⟩ = D sup

f=g̃(w⊤·),w∈Sd−1,∥g̃∥H≤1

1

n

n∑
i=1

εif(xi).

Taking the expectation over the data set and ε on both sides and renaming g̃ as g for
ease of exposition yields the desired result.

A.4.2 Lemma 18 and its Proof

This lemma provides an explicit formula for computing the supremum over functions within
the unit ball of H, which we can then use for the calculation of Gaussian complexity.

Lemma 18 (Optimal g in Gaussian Complexity) For any data set (x1, . . . , xn) and
w ∈ Rd, with K(w) ∈ Rn×n the kernel matrix of kernel k(B) with data (w⊤x1, . . . , w

⊤xn)
and ε ∈ Rn,

sup
∥g∥H≤1

1

n

n∑
i=1

εig(w
⊤xi) =

1

n

√
ε⊤K(w)ε

Proof [Proof of Lemma 18] By applying the definitions, we obtain

sup
∥g∥H≤1

1

n

n∑
i=1

εig(w
⊤xi) = sup

∥g∥H≤1

1

n

n∑
i=1

εi⟨g, k(B)

w⊤xi
⟩ = sup

∥g∥H≤1
⟨g, 1

n

n∑
i=1

εik
(B)

w⊤xi
⟩

=
1

n

〈 ∑n
i=1 εik

(B)

w⊤xi

∥
∑n

i=1 εik
(B)

w⊤xi
∥H

,
n∑

j=1

εjk
(B)

w⊤xj

〉

=
1

n
∥

n∑
i=1

εik
(B)

w⊤xi
∥H =

1

n

√
ε⊤K(w)ε,

which is the desired result.
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A.4.3 Proof of Lemma 13

Proof [Proof of Lemma 13] Define gζ such that gζ(0) = 0 and g′ζ(x) = min(|g′(x)|, 1/ζ) sign(g′(x)).
Note that ∥g′ζ∥∞ ≤

1
ζ , thus gζ is 1

ζ -Lipschitz. Additionally, for any a ∈ R,

|gζ(a)− g(a)| =
∣∣∣∣∫ a

0

(
g′ζ(t)− g′(t)

)
dt

∣∣∣∣
≤
∫ a

0

∣∣g′ζ(t)− g′(t)
∣∣ dt ≤ ∫ +∞

−∞
1|g′(t)|≥1/ζ

(
|g′(t)| − 1/ζ

)
dt

≤
∫ +∞

−∞
1|g′(t)|≥1/ζ |g′(t)| dt ≤

∫ +∞

−∞
ζ|g′(t)|2 dt

≤ ζ since

∫ +∞

−∞

(
g′(t)

)2
dt ≤ 1,

yielding the desired result.

A.4.4 Lemma 19 and its Proof

Lemma 19 (Gaussian Complexity of Finite Set of Lipschitz Functions) Let h1, . . . hM
be 1-Lipschitz functions from R to R and let ε be a random centred Gaussian vector with
identity covariance matrix. Then

Eε

(
sup

h∈{h1,...,hM},w∈Sd−1

1

n

n∑
i=1

εih(w
⊤xi)

)

≤ Eε

(∥∥∥∥√2n
n∑

i=1

εixi

∥∥∥∥∗ +
√
8

∑n
i=1(∥xi∥∗)2

n2

√
2 logM

)
.

This lemma is inspired by Bartlett and Mendelson (2002).

Proof [Proof of Lemma 19] We use Slepian’s lemma (Ledoux and Talagrand, 1991, Corollary
3.14). For h ∈ {h1, . . . hM}, w ∈ Sd−1, let

Xh,w :=
1

n

n∑
i=1

εih(w
⊤xi) and Yh,w =

√
2

n

n∑
i=1

εiw
⊤xi +

M∑
j=1

1h=hj
ε̃j

√
8

∑n
i=1(∥xi∥∗)2

n2
,
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where ε̃ is a centred Gaussian vector with identity covariance matrix independent of ε.
Notice that for h, h̃ ∈ {h1, . . . hM}, w, w̃ ∈ Sd−1, we have

Eε((Xh,w −Xh̃,w̃)
2) =

1

n2

n∑
i=1

(h(w⊤xi)− h̃(w̃⊤xi))
2

≤ 1

n2

n∑
i=1

(h(w⊤xi)− h(w̃⊤xi) + h(w̃⊤xi)− h̃(w̃⊤xi))
2

≤ 2

n2

n∑
i=1

(h(w⊤xi)− h(w̃⊤xi))
2 + (h(w̃⊤xi)− h̃(w̃⊤xi))

2.

We can then deal with the two terms separately. For the left term, the fact that h is
1-Lipschitz yields that

2

n2

n∑
i=1

(h(w⊤xi)− h(w̃⊤xi))
2 ≤ 2

n2

n∑
i=1

(w⊤xi − w̃⊤xi)
2.

Then, using the fact that h− h̃ is 2-Lipschitz and h(0) = h̃(0) = 0, we have

2

n2

n∑
i=1

(h(w̃⊤xi)− h̃(w̃⊤xi))
2 =

2

n2

n∑
i=1

(h(w̃⊤xi)− h̃(w̃⊤xi)− (h(0)− h̃(0))2

≤ 2

n2

n∑
i=1

1h̸=h′4(w⊤xi)
2 ≤ 1h̸=h̃

8

n2

n∑
i=1

(∥xi∥∗)2.

All in all Eε((Xh,w − Xh̃,w̃)
2) ≤ Eε,ε̃((Yh,w − Yh̃,w̃)

2) therefore we can apply Slepian’s
lemma and obtain

Eε

(
sup

h∈{h1,...,hM},w∈Sd−1

1

n

n∑
i=1

εih(w
⊤xi)

)

≤ Eε,ε̃

 sup
h∈{h1,...,hM},w∈Sd−1

√
2

n

n∑
i=1

εiw
⊤xi +

M∑
j=1

ε̃j1h=hj

√
8

∑n
i=1(∥xi∥∗)2

n2

 .

We then remark that the first term of the expectation does not depend on h and that we
can take the supremum over the sphere explicitly, while the second term does not depend
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on w and we can also take the supremum over {h1, . . . , hM} explicitly

Eε

(
sup

h∈{h1,...,hM},w∈Sd−1

1

n

n∑
i=1

εih(w
⊤xi)

)

≤ Eε,ε̃

 sup
w∈Sd−1

√
2

n

n∑
i=1

εiw
⊤xi + sup

h∈{h1,...,hM}

M∑
j=1

ε̃j1h=hj

√
8

∑n
i=1(∥xi∥∗)2

n2


≤ Eε,ε̃

(
sup

w∈Sd−1

√
2

n

n∑
i=1

εiw
⊤xi + sup

j∈[M ]
ε̃j

√
8

∑n
i=1(∥xi∥∗)2

n2

)

≤ Eε

(∥∥∥∥√2n
n∑

i=1

εixi

∥∥∥∥∗
)

+

√
8

∑n
i=1(∥xi∥∗)2

n2

√
2 logM.

A.4.5 Proof of Lemma 17

Proof [Proof of Lemma 17] We begin with the bounded case. The bounds on the expec-
tations are clearly valid. Then, since 1 +

√
∥X∥∗ is a bounded variable, it is necessarily

subgaussian with a variance proxy bounded by (1+
√
R)2

2 log(2) ≤ (1 +
√
R)2 (Vershynin, 2018,

Proposition 2.5.2 (iv)).
Next, we consider the subgaussian case. Using the Cauchy-Schwarz inequality, we handle

the case where ∥ · ∥∗ = ∥ · ∥2 using Vershynin (2018, Proposition 2.5.2)

√
EX(∥X∥2) ≤

(
EX(∥X∥22)

)1/4 ≤ √6( d∑
a=1

σ2
a

)1/4
.

For the ∥ · ∥∞ case, applying Vershynin (2018, Exercise 2.5.10) with the constant made
explicit yields the desired result.

For the second expectation with ∥ · ∥∗ = ∥ · ∥2, we have

EDn

(
max
i∈[n]
∥Xi∥22

)
= Emax

i∈[n]

d∑
a=1

((Xi)a)
2 ≤

d∑
a=1

Emax
i∈[n]

(
(Xi)a

)2
≤

d∑
a=1

1

t
log
(
E
(
etmaxi∈[n]((Xi)a)

2)) ≤ d∑
a=1

1

t
log
(
nE
(
et((Xi)a)

2))
,

for all t > 0. We can then bound this by
∑d

a=1
1
t log(ne

t(6
√
2eσa)2) for t < 1/(6

√
2eσa)

2,
yielding:

EDn

(
max
i∈[n]
∥Xi∥22

)
≤ 72e(1 + log(n))

d∑
a=1

σ2
a.

The same proof technique applies to EDn

(
maxi∈[n] ∥Xi∥2∞

)
, yielding the desired result.
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Finally, we consider the subgaussianity of 1 +
√
∥X∥∗. Note that the sum of two sub-

gaussian variables is subgaussian. Using Vershynin (2018, Proposition 2.5.2 (ii)), for two
real random variables Z and Z̃ with variance proxies σ2 and σ̃2 respectively, we have that
Z + Z̃ is subgaussian with variance proxy (σ + σ̃)2. Additionally, the absolute value of a
subgaussian variable is also subgaussian with the same variance proxy (Vershynin, 2018,
Proposition 2.5.2).

For ∥ · ∥ = ∥ · ∥2, we have 1+
√
∥X∥2 ≤ 1+

∑d
a=1 |Xa|. Since 1 and Xa are subgaussian

variables, this yields the desired result.
For ∥ · ∥∞, for all t > 0,

P(∥X∥∞ ≥
√
2σ2 log(2d) + t) ≤ 2de−

(
√

2σ2 log(2d)+t)2

2σ2

≤ 2e
− t2

2σ2−
t
√

log(2d)√
2σ2 ≤ 2e−

t2

2σ2 .

Thus, ∥X∥∞ −
√

2σ2 log(2d) is subgaussian with variance proxy σ2. Therefore, ∥X∥∞
is subgaussian with variance proxy bounded by σ2(1 +

√
log(2d))2. Then, 1 +

√
∥X∥∞

is subgaussian because it is less than 2 + ∥X∥∞, which is subgaussian (Vershynin, 2018,
Proposition 2.5.2) with a variance proxy bounded by that of 2+ ∥X∥∞, yielding the desired
result.

A.5 Lemmas Needed for Section 4.2 and their Proofs

Here we provide lemmas necessary for the proof of Theorem 16 and the analysis of its
distribution-dependent terms.

A.5.1 Lemma 20 and its Proof

Lemma 20 relates the Gaussian complexity to useful quantities to bound the expected risk.

Lemma 20 (Use of Gaussian Complexity) Let D > 0 and the data set Dn = (xi, yi)i∈[n]
consists of i.i.d. samples of the random variable (X,Y ) ∈ X × Y. Assume that the loss
ℓ is L-Lipschitz in its second (bounded) argument, i.e., ∀y ∈ Y, a ∈ {f(x) | x ∈ X , f ∈
F∞, Ω(f) ≤ D}, a→ ℓ(y, a) is L-Lipschitz. Then, we have

EDn

(
sup

f∈F∞,Ω(f)≤D
R̂(f)−R(f) + sup

f∈F∞,Ω(f)≤D
R(f)− R̂(f)

)
≤ 6DL

(
1√
n
+Gn

)
.

Proof [Proof of Lemma 20] By Bach (2024, Proposition 4.2), we have

EDn

(
sup

f∈F∞,Ω(f)≤D
R̂(f)−R(f) + sup

f∈F∞,Ω(f)≤D
R(f)− R̂(f)

)

≤ 4Eε̃,Dn

(
sup

f∈F∞,Ω(f)≤D

1

n

n∑
i=1

εiℓ(yi, f(xi))

)
,

where ε̃ consists of i.i.d. Rademacher variables.
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Next, applying the contraction principle from Bach (2024, Proposition 4.3), we get

Eε̃,Dn

(
sup

f∈F∞,Ω(f)≤D

1

n

n∑
i=1

εiℓ(yi, f(xi))

)
≤ Eε̃,Dn

(
sup

f∈F∞,Ω(f)≤D

1

n

n∑
i=1

ε̃if(xi)

)
.

Then, using Wainwright (2019, Exercise 5.5), we have

Eε̃,Dn

(
sup

f∈F∞,Ω(f)≤D

1

n

n∑
i=1

ε̃if(xi)

)
≤
√

π

2
Eε,Dn

(
sup

f∈F∞,Ω(f)≤D

1

n

n∑
i=1

εif(xi)

)
,

where ε ∼ N (0, Id).
Finally, by applying Lemma 11 and combining all these results, we obtain the desired

inequality

EDn

(
sup

f∈F∞,Ω(f)≤D
R̂(f)−R(f) + sup

f∈F∞,Ω(f)≤D
R(f)− R̂(f)

)
≤ 6DL

(
1√
n
+Gn

)
.

A.5.2 Lemma 21 and its Proof

Lemma 21 describes a useful property on the expectation of the hyperbolic cosine of a
subgaussian random variable.

Lemma 21 (Technical Lemma on Subgaussian Random Variables) Let Z be a real-valued
random variable (not necessarily centred) that is subgaussian (see Definition 15.) Then, for
all λ ∈ R,

E (cosh(λZ)) ≤ e(6
√
2e)2σ2λ2

.

Proof [Proof of Lemma 21] An equivalent definition of subgaussianity is that for all λ ∈ R,
if 6
√
2eσ|λ| ≤ 1, then E(eλ2Z2

) ≤ e(6
√
2e)2σ2λ2 , see Vershynin (2018, Proposition 2.5.2).

First, in the case |λ| ≤ 1
6
√
2eσ

. Using the inequality ex ≤ x+ ex
2 for all x ∈ R, we get

E (cosh(λZ)) ≤ E

(
λZ + eλ

2Z2 − λZ + eλ
2Z2

2

)
= E

(
eλ

2Z2
)
≤ e(6

√
2e)2σ2λ2

.

Next, consider the case |λ| ≥ 1
6
√
2eσ

. We can bound the expectation as follows

E (cosh(λZ)) ≤ E
(
e|λZ|

)
= E

(
e
6
√
2eσ|λ| |Z|

6
√
2eσ

)
≤ E

(
e
(6
√
2e)2σ2λ2/2+ Z2

2(6
√
2e)2σ2

)
≤ e(6

√
2e)2σ2λ2/2e1/2 ≤ e(6

√
2e)2σ2λ2

,

where we use the fact that (6
√
2e)2σ2λ2 ≥ 1 to justify the final inequality.

Thus, in both cases, we have shown that E (cosh(λZ)) ≤ e(6
√
2e)2σ2λ2 , proving the lemma.
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A.5.3 Lemma 22 and its Proof

Lemma 22 is an application of McDiarmid’s inequality (a specific version by Meir and Zhang
(2003) for subgaussian random variables) to our learning problem.

Lemma 22 (Use of McDiarmid’s Inequality) Let D > 0 and δ ∈ (0, 1). Assume that
1 +

√
∥X∥∗ is subgaussian with variance proxy σ2 and that the loss ℓ is L-Lipschitz in its

second (bounded) argument, i.e., ∀y ∈ Y, a ∈ {f(x) | x ∈ X , f ∈ F∞, Ω(f) ≤ D}, a →
ℓ(y, a) is L-Lipschitz. Then, with probability greater than 1− δ,

sup
f∈F∞,Ω(f)≤D

R̂(f)−R(f) + sup
f∈F∞,Ω(f)≤D

R(f)− R̂(f)

≤ EDn

(
sup

f∈F∞,Ω(f)≤D
R̂(f)−R(f) + sup

f∈F∞,Ω(f)≤D
R(f)− R̂(f)

)

+
48
√
2eLDσ√
n

√
log

1

δ
.

Proof [Proof of Lemma 22] We use a specific version of McDiarmid’s inequality (Meir and
Zhang, 2003, Theorem 3). First, we show that the conditions for applying the theorem are
met. Let H̃ := {h : (x, y) ∈ X × Y → ℓ(y, f(x)) − ℓ(y, f̃(x)) | Ω(f) ≤ D,Ω(f̃) ≤ D}. For
any λ > 0, we have

EX,Y

(
sup

h,h̃∈H̃
cosh(2λ(h(X,Y )− h̃(X,Y )))

)

= EX,Y

(
sup

f,Ω(f)≤D,f̃ ,Ω(f̃)≤D

cosh(2λ(ℓ(Y, f(X))− ℓ(Y, f̃(X))))

)

≤ EX,Y

(
sup

f,Ω(f)≤D,f̃ ,Ω(f̃)≤D

cosh(2λL|f(X)− f̃(X)|)

)

≤ EX,Y

(
sup

f,Ω(f)≤D,f̃ ,Ω(f̃)≤D

cosh(4λLD(1 +
√
∥X∥∗))

)
= EX,Y

(
cosh(4λLD(1 +

√
∥X∥∗))

)
≤ e(48

√
e)2L2D2σ2λ2/2,

where the last inequality follows from Lemma 21. Hence, the condition is verified with
M = 48

√
eLDσ and applying Meir and Zhang (2003, Theorem 3) yields the desired result.

Appendix B. Numerical Experiments

In this section, we detail the parameters and methodology used in the different experi-
ments. The code needed to run the experiments can be found at https://github.com/
BertilleFollain/BKerNN.
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B.1 Experiment 1: Optimisation procedure, Importance of Positive
Homogeneous Kernel

Each method was tuned using 5-fold cross-validation with grid search, using negative mean
squared error as the scoring metric. The training was set for 20 iterations and the step-
size parameter (γ) was set to 500, with backtracking enabled. Regularisation parameter
candidates were λ = {0.05, 0.1, 0.5, 1, 1.5} × 2maxi∈[n] ∥xi∥2/n. Once the regularisation
parameters had been selected, we trained from scratch for 200 iterations, with the other
parameters kept as before.

B.2 Experiments 2 & 3: Influence of Parameters (Number of Particles m,
Regularisation Parameter λ, and Type of Regularisation)

For Experiment 2, in the first subplot, we set the step-size parameter γ to 500 and the
number of iterations to 50. The regularisation type was set to Ωbasic and the regularisation
parameter to λ = 0.02. The tested values of m were 1, 3, 5, 7, 10, 15, 20, 30, 40, and 50.

In the second subplot, we varied the regularisation parameter λ in 0.0005, 0.001, 0.005,
0.01, 0.02, 0.05, 0.1, 0.3, and 0.5, while keeping the number of particles fixed at m = 10.

In Experiment 3, the BKerNN model was instantiated with a fixed number of particles
m = 20, step-size parameter γ = 500, and number of iterations 25. The regularisation
parameter λ was set as 2maxi∈n ∥xi∥2/n.

B.3 Experiment 4: Comparison to Neural Network on 1D Examples, Influence
of Number of Particles/Width of Hidden Layer m

In Experiment 4, we investigated the performance of two learning methods, BKerNN and
ReLUNN, on three different 1D functions. The training set always consists of 128 samples,
with x sampled uniformly between -1 and 1, while the target function/test set without noise
consists of 1024 equally spread out points. The response was then generated as follows.
For the first function, y = sin(2πx) + noise, for the second y = sign(sin(2πx)) + noise, for
the third y = 4|x + 1 − 0.25 − ⌊x + 1 − 0.25⌋ − 0.5| − 1 + noise, where the noise is always
normal, centred and with standard deviation equal to 0.2. For BKerNN, the regularisation
parameter λ was selected from [0.005, 0.01, 0.02, 0.05] using 5-fold cross-validation and the
negative mean squared error score. ReLUNN was trained using a batch size of 16, a number
of iterations equal to 400,000 and a step-size of 0.005.

B.4 Experiment 5: Prediction Score and Feature Learning Score Against
Growing Dimension and Sample Size, a Comparison of BKerNN with
Kernel Ridge Regression and a ReLU Neural Network

In Experiment 5, data sets were generated with input data uniformly sampled within the
hypercube [−1, 1]d. The feature matrix P was generated from the orthogonal group. For
each configuration, training and test sets of sizes n and ntest = 201, respectively, were
created. Output labels y were computed as yi = |

∑k
a=1(sin((P

⊤xi)a))|, with k = 3 relevant
features.

The first two plots fixed the dimension at 15 and varied sample sizes across [10, 20, 50,
100, 150, 200, 300, 400, 500]. The last two plots fixed the sample size at 212 and varied
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dimensions across [3, 5, 10, 20, 30, 40, 50]. Each configuration was repeated 10 times with
different random seeds.

For BKerNN: λ was set to 2maxi∈[n](∥xi∥2)/n, the number of particles was m = 50,
the regularisation type Ωfeature, the number of iterations 20, and step-size γ = 500 with
backtracking line search. For BKRR, λ was chosen similarly to BKerNN. For ReLUNN,
the number of neurons was set to 50, learning rate to 0.05, batch size to 16, and number of
iterations to 1500.

B.5 Experiment 6: Comparison on Real Data Sets Between BKerNN, Kernel
Ridge Regression and a ReLU Neural Network

In Experiment 6, BKRR and both versions of BKerNN had regularisation parameter fixed
equal to maxi∈[n](∥xi∥2)/n, where n is the number of training samples (i.e. 400 except for
“tecator” where it was 192, “semeion” where it was 80 and “pah” where it was 64. The ratio of
samples in the test set compared to the total dataset was nonetheless constant equal to 1/5,
as in the other datasets). Backtracking line search was used for BKerNN and the starting
step-size was 500, while the number of iterations was 40 (except for “semeion” where it was
4. For ReLUNN, the batch size was 16, while the number of iterations was 2500 which
corresponds to 100 epochs (except for “semeion” where it was 250, and the step-size was set
to 0.01.

References

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task feature
learning. Machine Learning, 73(3):243–272, 2008.

Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American Mathe-
matical Society, 68(3):337–404, 1950.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. Journal
of Machine Learning Research, 18(19):1–53, 2017.

Francis Bach. Learning Theory from First Principles. MIT Press, 2024. URL https:
//www.di.ens.fr/~fbach/ltfp_book.pdf.

Francis Bach, Gert Lanckriet, and Michael Jordan. Multiple kernel learning, conic duality,
and the SMO algorithm. In International Conference on Machine Learning (ICML), 2004.

Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Optimization
with sparsity-inducing penalties. Foundations and Trends in Machine Learning, 4(1):
1–106, 2012.

Peter Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities: risk bounds
and structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

Amir Beck. First-Order Methods in Optimization. MOS-SIAM Series on Optimization.
Society for Industrial and Applied Mathematics, 2017.

52

https://www.di.ens.fr/~fbach/ltfp_book.pdf
https://www.di.ens.fr/~fbach/ltfp_book.pdf


Feature Learning with Neural Networks and Kernels

Alain Berlinet and Christine Thomas-Agnan. Reproducing kernel Hilbert spaces in probability
and statistics. Springer Science & Business Media, 2011.

Alberto Bietti, Joan Bruna, and Loucas Pillaud-Vivien. On learning gaussian multi-index
models with gradient flow, 2023. URL https://arxiv.org/abs/2310.19793.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University Press, 2013.

David Brillinger. A generalized linear model with “Gaussian” regressor variables. In Selected
Works of David Brillinger, pages 589–606. Springer, 2012.

Lénaïc Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 31, 2018.

Lénaïc Chizat and Francis Bach. Gradient descent on infinitely wide neural networks: global
convergence and generalization. In Proceedings of the International Congress of Mathe-
maticians 2022, pages 5398–5419. EMS Press, 2022.

Arnak Dalalyan, Anatoli Juditsky, and Vladimir Spokoiny. A new algorithm for estimating
the effective dimension-reduction subspace. Journal of Machine Learning Research, 9(53):
1647–1678, 2008.

Petros Drineas and Michael Mahoney. On the Nyström method for approximating a Gram
matrix for improved kernel-based learning. Journal of Machine Learning Research, 6(72):
2153–2175, 2005.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and
its oracle properties. Journal of the American statistical Association, 96(456):1348–1360,
2001.

Bertille Follain and Francis Bach. Nonparametric linear feature learning in regression
through regularisation. Electronic Journal of Statistics, 18(2):4075–4118, 2024.

Kenji Fukumizu, Francis Bach, and Michael Jordan. Kernel dimension reduction in regres-
sion. The Annals of Statistics, 37(4):1871–1905, 2009.

Tomer Galanti, Mengjia Xu, Liane Galanti, and Tomaso Poggio. Norm-based generalization
bounds for sparse neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), volume 36, pages 42482–42501, 2023.

Christophe Giraud. Introduction to High-Dimensional Statistics. CRC Press, 2014.

Mehmet Gönen and Ethem Alpaydın. Multiple kernel learning algorithms. Journal of
Machine Learning Research, 12(64):2211–2268, 2011.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still
outperform deep learning on typical tabular data? In Advances in Neural Information
Processing Systems (NeurIPS), volume 35, pages 507–520, 2022.

53

https://arxiv.org/abs/2310.19793


B. FOLLAIN and F. BACH

Tjeerd Jan Heeringa, Len Spek, Felix L Schwenninger, and Christoph Brune. Embeddings
between Barron spaces with higher-order activation functions. Applied and Computational
Harmonic Analysis, 73:101691, 2024.

Vladimir Koltchinskii, Karim Lounici, and Alexandre Tsybakov. Nuclear-norm penalization
and optimal rates for noisy low-rank matrix completion. The Annals of Statistics, 39(5):
2302–2329, 2011.

Vera Kurkova and Marcello Sanguineti. Bounds on rates of variable-basis and neural-network
approximation. IEEE Transactions on Information Theory, 47(6):2659–2665, 2001.

Gert Lanckriet, Nello Cristianini, Peter Bartlett, Laurent Ghaoui, and Michael Jordan.
Learning the kernel matrix with semi-definite programming. Journal of Machine Learning
Research, 5(Jan):27–72, 2004.

Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: Isoperimetry and
Processes. A Series of Modern Surveys in Mathematics Series. Springer, 1991.

Ker-Chau Li. Sliced inverse regression for dimension reduction. Journal of the American
Statistical Association, 86(414):316–327, 1991.

Tengyuan Liang, Alexander Rakhlin, and Karthik Sridharan. Learning with square loss:
Localization through offset Rademacher complexity. In Conference on Learning Theory
(COLT), volume 40, pages 1260–1285, 2015.

Fanghui Liu, Leello Dadi, and Volkan Cevher. Learning with norm constrained, over-
parameterized, two-layer neural networks. Journal of Machine Learning Research, 25
(138):1–42, 2024.

Ulrike Luxburg and Olivier Bousquet. Distance-based classification with Lipschitz functions.
Journal of Machine Learning Research, 5(Jun):669–695, 2004.

Pierre Marion and Raphaël Berthier. Leveraging the two-timescale regime to demonstrate
convergence of neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), volume 36, pages 64996–65029, 2023.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layer
neural networks: Dimension-free bounds and kernel limit. In Conference on Learning
Theory (COLT), volume 99, pages 2388–2464, 2019.

Ron Meir and Tong Zhang. Generalization error bounds for Bayesian mixture algorithms.
Journal of Machine Learning Research, 4(Oct):839–860, 2003.

Yuliya Mishura and Georgiy Shevchenko. Gaussian processes. integration with respect to
gaussian processes. In Theory and Statistical Applications of Stochastic Processes, chap-
ter 3, pages 39–65. John Wiley & Sons, Ltd, 2017.

Behrad Moniri, Donghwan Lee, Hamed Hassani, and Edgar Dobriban. A theory of non-linear
feature learning with one gradient step in two-layer neural networks. In International
Conference on Machine Learning (ICML), volume 235, pages 36106–36159, 2024.

54



Feature Learning with Neural Networks and Kernels

Alireza Mousavi-Hosseini, Denny Wu, and Murat A. Erdogdu. Learning multi-index models
with neural networks via mean-field langevin dynamics, 2024. URL https://arxiv.org/
abs/2408.07254.

Atsushi Nitanda and Taiji Suzuki. Stochastic particle gradient descent for infinite ensembles,
2017. URL https://arxiv.org/abs/1712.05438.

Rahul Parhi and Robert Nowak. Banach space representer theorems for neural networks
and ridge splines. Journal of Machine Learning Research, 22:43:1–43:40, 2020.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake
Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot,
and Édouard Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12(85):2825–2830, 2011.

Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to
data science. Foundations and Trends in Machine Learning Series, 11(5-6):355–607, 2019.

Lorenzo Rosasco, Silvia Villa, Sofia Mosci, Matteo Santoro, and Alessandro Verri. Non-
parametric sparsity and regularization. Journal of Machine Learning Research, 14(52):
1665–1714, 2013.

Bernhard Schölkopf, Ralf Herbrich, and Alex Smola. A generalized representer theorem. In
Computational Learning Theory (COLT), pages 416–426, 2001.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks: A
law of large numbers. SIAM Journal on Applied Mathematics, 80(2):725–752, 2020.

Endre Süli and David Mayers. An Introduction to Numerical Analysis. Cambridge University
Press, 2003.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in
Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge
University Press, 2018.

Vladimir Vovk. Kernel ridge regression. In Empirical inference, pages 105–116. Springer,
2013.

Grace Wahba. Spline Models for Observational Data. Society for Industrial and Applied
Mathematics, 1990.

Martin Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019.

Christopher Williams and Carl Edward Rasmussen. Gaussian Processes for Machine Learn-
ing. MIT Press, 2006.

Sewall Wright. Correlation and causation. Journal of Agricultural Research, 20(3):557–585,
1921.

55

https://arxiv.org/abs/2408.07254
https://arxiv.org/abs/2408.07254
https://arxiv.org/abs/1712.05438


B. FOLLAIN and F. BACH

Yingcun Xia. A multiple-index model and dimension reduction. Journal of the American
Statistical Association, 103(484):1631–1640, 2008.

Yingcun Xia, Howell Tong, Wai Keung Li, and Li-Xing Zhu. An adaptive estimation of
dimension reduction space. Journal of the Royal Statistical Society. Series B (Statistical
Methodology), 64(3):363–410, 2002.

Zhuoran Yang, Krishnakumar Balasubramanian, Zhaoran Wang, and Han Liu. Estimating
high-dimensional non-gaussian multiple index models via stein’s lemma. In Advances in
Neural Information Processing Systems (NeurIPS), volume 30, 2017.

Yiming Ying and Colin Campbell. Rademacher Chaos Complexities for Learning the Kernel
Problem. Neural Computation, 22(11):2858–2886, 11 2010.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67,
2006.

Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics, 38(2):894, 2010.

Shuxin Zheng, Qi Meng, Huishuai Zhang, Wei Chen, Nenghai Yu, and Tie-Yan Liu. Capacity
control of ReLU neural networks by basis-path norm. AAAI, pages 5925–5932, 2018.

56


	Introduction
	Plan of the Paper and Notations

	Neural Networks and Kernel Methods Fusion
	Custom Space of Functions
	Properties of Reproducing Kernel Hilbert Space H and Kernel k
	Characterisation of F infinite
	Learning the Kernel or Training a Neural Network?
	Kernel Perspective
	Neural Network Perspective

	Other Penalties

	Computing the Estimator
	Optimisation Procedure
	Fixed Particles w1, ..., wm
	Proximal Step to Optimise the Weights w1, ..., wm
	Algorithm Pseudocode

	Convergence Guarantees on Optimisation Procedure

	Statistical Analysis
	Gaussian Complexity
	Dimension-Dependent Bound
	Dimension-Independent Bound

	Bound on Expected Risk of Regularised Estimator

	Numerical Experiments
	Introduction to Scores and Competitors
	Experiment 1: Optimisation Procedure, Importance of Positive Homogeneous Kernel
	Experiments 2 & 3: Influence of Parameters (Number of Particles m, Regularisation Parameter lambda, and Type of Regularisation)
	Experiment 2
	Experiment 3

	Experiment 4: Comparison to Neural Network on 1D Examples, Influence of Number of Particles/Width of Hidden Layer m
	Experiment 5: Prediction Score and Feature Learning Score Against Growing Dimension and Sample Size, a Comparison of BKerNN with Brownian Kernel Ridge Regression and a ReLU Neural Network
	Experiment 6: Comparison on Real Data Sets Between BKerNN, Brownian Kernel Ridge Regression and a ReLU Neural Network

	Conclusion
	Extra Lemmas and Proofs
	Proofs of Section 2.3 Lemmas
	Proof of Lemma 3
	Proof of Lemma 4

	Proofs of Section 2.4 Lemmas
	Proof of Lemma 5
	Proof of Lemma 6

	Proofs of Section 3.1 Lemmas
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9

	Extra Lemma and Proofs Related to Section 4 Except Section 4.2
	Proof of Lemma 11
	Lemma 18 and its Proof
	Proof of Lemma 13
	Lemma 19 and its Proof
	Proof of Lemma 17

	Lemmas Needed for Section 4.2 and their Proofs
	Lemma 20 and its Proof
	Lemma 21 and its Proof
	Lemma 22 and its Proof


	Numerical Experiments
	Experiment 1: Optimisation procedure, Importance of Positive Homogeneous Kernel
	Experiments 2 & 3: Influence of Parameters (Number of Particles m, Regularisation Parameter lambda, and Type of Regularisation)
	Experiment 4: Comparison to Neural Network on 1D Examples, Influence of Number of Particles/Width of Hidden Layer m
	Experiment 5: Prediction Score and Feature Learning Score Against Growing Dimension and Sample Size, a Comparison of BKerNN with Kernel Ridge Regression and a ReLU Neural Network
	Experiment 6: Comparison on Real Data Sets Between BKerNN, Kernel Ridge Regression and a ReLU Neural Network


